Documentation | |
Build Status | |
Code Style | |
Citation |
Fast Jacobian and Hessian sparsity detection via operator-overloading.
To install this package, open the Julia REPL and run
julia> ]add SparseConnectivityTracer
For functions y = f(x)
and f!(y, x)
, the sparsity pattern of the Jacobian can be obtained
by computing a single forward-pass through the function:
julia> using SparseConnectivityTracer
julia> detector = TracerSparsityDetector();
julia> x = rand(3);
julia> f(x) = [x[1]^2, 2 * x[1] * x[2]^2, sin(x[3])];
julia> jacobian_sparsity(f, x, detector)
3×3 SparseArrays.SparseMatrixCSC{Bool, Int64} with 4 stored entries:
1 ⋅ ⋅
1 1 ⋅
⋅ ⋅ 1
As a larger example, let's compute the sparsity pattern from a convolutional layer from Flux.jl:
julia> using SparseConnectivityTracer, Flux
julia> detector = TracerSparsityDetector();
julia> x = rand(28, 28, 3, 1);
julia> layer = Conv((3, 3), 3 => 2);
julia> jacobian_sparsity(layer, x, detector)
1352×2352 SparseArrays.SparseMatrixCSC{Bool, Int64} with 36504 stored entries:
⎡⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⣷⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠙⢿⣦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠙⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠻⣷⣄⠀⎥
⎢⢤⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠛⢦⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠳⣤⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠓⎥
⎢⠀⠙⢿⣦⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠉⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣄⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠻⣷⣄⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⢿⣦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⎦
For scalar functions y = f(x)
, the sparsity pattern of the Hessian of f
:
julia> x = rand(5);
julia> f(x) = x[1] + x[2]*x[3] + 1/x[4] + 1*x[5];
julia> hessian_sparsity(f, x, detector)
5×5 SparseArrays.SparseMatrixCSC{Bool, Int64} with 3 stored entries:
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅
julia> g(x) = f(x) + x[2]^x[5];
julia> hessian_sparsity(g, x, detector)
5×5 SparseArrays.SparseMatrixCSC{Bool, Int64} with 7 stored entries:
⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 1 ⋅ 1
⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ 1
For more detailed examples, take a look at the documentation.
TracerSparsityDetector
returns conservative sparsity patterns over the entire input domain of x
.
It is not compatible with functions that require information about the primal values of a computation (e.g. iszero
, >
, ==
).
To compute a less conservative sparsity pattern at an input point x
, use TracerLocalSparsityDetector
instead.
Note that patterns computed with TracerLocalSparsityDetector
depend on the input x
and have to be recomputed when x
changes:
julia> using SparseConnectivityTracer
julia> detector = TracerLocalSparsityDetector();
julia> f(x) = ifelse(x[2] < x[3], x[1] ^ x[2], x[3] * x[4]);
julia> hessian_sparsity(f, [1 2 3 4], detector)
4×4 SparseArrays.SparseMatrixCSC{Bool, Int64} with 4 stored entries:
1 1 ⋅ ⋅
1 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
julia> hessian_sparsity(f, [1 3 2 4], detector)
4×4 SparseArrays.SparseMatrixCSC{Bool, Int64} with 2 stored entries:
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
SparseConnectivityTracer uses ADTypes.jl's interface for sparsity detection,
making it compatible with DifferentiationInterface.jl's sparse automatic differentiation functionality.
In fact, the functions jacobian_sparsity
and hessian_sparsity
are re-exported from ADTypes.
- SparseDiffTools.jl: automatic sparsity detection via Symbolics.jl and Cassette.jl
- SparsityTracing.jl: automatic Jacobian sparsity detection using an algorithm based on SparsLinC by Bischof et al. (1996)