/EmotionsInTheWild-CNN-Benchmarks

Emotion (Context + Facial) recognition in the wild using ConvNets (EfficientNet, ResNet, ResNext)

Primary LanguagePythonMIT LicenseMIT

emotic

Emotion (Context + Facial) recognition in the wild using ConvNets (EfficientNet, ResNet, ResNext)

License License


Emotions In the Wild: CNN benchmarks

Emotion (Context + Facial) recognition in the wild using ConvNets (EfficientNet, ResNet, ResNext)

For emotic dataset (pre-training),

Training

  • Set the hyperparameters in the config.py file

  • Run, train.py

Pre-trained models

Model Dataset pre-trained weight
resnet34 emotic resnet34
resnet50 emotic + cfid resnet50
efficientnet-b0 emotic + cfid efn-b0
efficientnet-b1 emotic + cfid efn-b1
efficientnet-b2 emotic + cfid efn-b2

Support

Tested with: python3.6 python3.7 python3.8 Model support: resnet 18 to 152 resnext 50, 101 efficientnets b0 to b7

TO-DO:

  • multi-gpu training
  • augmentation
  • encoding facial landmarks

Others

Any contribution is welcome.