Emotion (Context + Facial) recognition in the wild using ConvNets (EfficientNet, ResNet, ResNext)
Emotion (Context + Facial) recognition in the wild using ConvNets (EfficientNet, ResNet, ResNext)
For emotic dataset (pre-training),
-
Download the dataset from http://sunai.uoc.edu/emotic/download.html
-
Download the json annotations from https://www.kaggle.com/furcifer/emoticlabelsjson
-
Install dependencies (
python >= 3.5
)pip install -r requirements.txt
-
If you want to use docker,
nvidia-docker build -t nabil/efncv:eitw . nvidia-docker run -it -d -v /path_to_github_repo/EmotionsInTheWild-CNN-Benchmarks/:/eitw/ --net=host --ipc=host nabil/efncv:eitw /bin/bash
-
Set the hyperparameters in the
config.py
file -
Run,
train.py
Model | Dataset | pre-trained weight |
---|---|---|
resnet34 | emotic | resnet34 |
resnet50 | emotic + cfid | resnet50 |
efficientnet-b0 | emotic + cfid | efn-b0 |
efficientnet-b1 | emotic + cfid | efn-b1 |
efficientnet-b2 | emotic + cfid | efn-b2 |
Tested with:
python3.6
python3.7
python3.8
Model support:resnet 18 to 152
resnext 50, 101
efficientnets b0 to b7
TO-DO:
- multi-gpu training
- augmentation
- encoding facial landmarks
Any contribution is welcome.