This is a forked version from deepcam-cn/yolov5-face, adapted to WINDOWS specifically
./data/widerface/
train/
images/0--Parade/*.jpg
images/1--Handshaking/*.jpg
...
images/61--Street_Battle/*.jpg
label.txt
val/
images/0--Parade/*.jpg
images/1--Handshaking/*.jpg
...
images/61--Street_Battle/*.jpg
label.txt
wider_val.txt
With their original code, I cannot reproduce their evaluation on windows. some changes are made as follows, in test_widerface.py, weights and dataset_folder are directly set
parser.add_argument('--weights', nargs='+', type=str, default='./weights/yolov5s-face.pt', help='model.pt path(s)')
parser.add_argument('--dataset_folder', default='./data/widerface/val/images/', type=str, help='dataset path')
The organized widerface dataset can be downloaded from google driver, thanks to biubug6,
and I add a for to loop through all the folders,
for image_dir in tqdm(glob.glob(os.path.join(testset_folder, '*'))):
for image_path in tqdm(glob.glob(os.path.join(image_dir, '*'))):
Now you can evaluate it directly
python test_widerface.py
python ./widerface_evaluate/evaluation.py
e.g. the Generated results are save as follows
./widerface_evaluate/widerface_txt/0--Parade/0_Parade_marchingband_1_1004.txt
......
./widerface_evaluate/widerface_txt/1--Handshaking/1_Handshaking_Handshaking_1_107.txt
......
the content of this example file (0_Parade_marchingband_1_1004.txt) contains the obtained results,
0_Parade_marchingband_1_20
61
540 357 40 45 0.835
29 403 29 36 0.820
465 355 29 33 0.793
82 391 23 27 0.789
....
I don't want to change the before mentioned Evaluation folders, so in train2yolo.py I changed the destination folders to widerfaceyolo
#save_path = '/ssd_1t/derron/yolov5-face/data/widerface/train'
#aa=WiderFaceDetection("/ssd_1t/derron/yolov5-face/data/widerface/widerface/train/label.txt")
save_path = './data/widerfaceyolo/train'
aa=WiderFaceDetection("./data/widerface/train/label.txt")
For this reason, the ./data/widerface.yaml has to be adapted too, as below,
#train: /ssd_1t/derron/yolov5-face/data/widerface/train # 16551 images
#val: /ssd_1t/derron/yolov5-face/data/widerface/val # 16551 images
train: ./data/widerfaceyolo/train # 16551 images
val: ./data/widerface/val # 16551 images
Consequently, relevant changes are also made in ./data/val2yolo.py!
You'd better commented out the wandb (wandb=none) if you don't wana bother to make an account!
===================================================================================== =====================================================================================
Original README.md in deepcam-cn/yolov5-face
2021.08: Yolov5-face to TensorRT.
Inference time on rxt2080ti.
Backbone | Pytorch | TensorRT_FP16 |
---|---|---|
yolov5n-0.5 | 11.9ms | 2.9ms |
yolov5n-face | 20.7ms | 2.5ms |
yolov5s-face | 25.2ms | 3.0ms |
yolov5m-face | 61.2ms | 3.0ms |
yolov5l-face | 109.6ms | 3.6ms |
Note: (1) Model inference (2) Resolution 640x640
2021.08: Add new training dataset Multi-Task-Facial,improve large face detection.
Method | Easy | Medium | Hard |
---|---|---|---|
YOLOv5s | 94.56 | 92.92 | 83.84 |
YOLOv5m | 95.46 | 93.87 | 85.54 |
Yolov5-face is a real-time,high accuracy face detection.
Single Scale Inference on VGA resolution(max side is equal to 640 and scale).
Large family
Method | Backbone | Easy | Medium | Hard | #Params(M) | #Flops(G) |
---|---|---|---|---|---|---|
DSFD (CVPR19) | ResNet152 | 94.29 | 91.47 | 71.39 | 120.06 | 259.55 |
RetinaFace (CVPR20) | ResNet50 | 94.92 | 91.90 | 64.17 | 29.50 | 37.59 |
HAMBox (CVPR20) | ResNet50 | 95.27 | 93.76 | 76.75 | 30.24 | 43.28 |
TinaFace (Arxiv20) | ResNet50 | 95.61 | 94.25 | 81.43 | 37.98 | 172.95 |
SCRFD-34GF(Arxiv21) | Bottleneck Res | 96.06 | 94.92 | 85.29 | 9.80 | 34.13 |
SCRFD-10GF(Arxiv21) | Basic Res | 95.16 | 93.87 | 83.05 | 3.86 | 9.98 |
- | - | - | - | - | - | - |
YOLOv5s | CSPNet | 94.67 | 92.75 | 83.03 | 7.075 | 5.751 |
YOLOv5s6 | CSPNet | 95.48 | 93.66 | 82.8 | 12.386 | 6.280 |
YOLOv5m | CSPNet | 95.30 | 93.76 | 85.28 | 21.063 | 18.146 |
YOLOv5m6 | CSPNet | 95.66 | 94.1 | 85.2 | 35.485 | 19.773 |
YOLOv5l | CSPNet | 95.78 | 94.30 | 86.13 | 46.627 | 41.607 |
YOLOv5l6 | CSPNet | 96.38 | 94.90 | 85.88 | 76.674 | 45.279 |
Small family
Method | Backbone | Easy | Medium | Hard | #Params(M) | #Flops(G) |
---|---|---|---|---|---|---|
RetinaFace (CVPR20 | MobileNet0.25 | 87.78 | 81.16 | 47.32 | 0.44 | 0.802 |
FaceBoxes (IJCB17) | 76.17 | 57.17 | 24.18 | 1.01 | 0.275 | |
SCRFD-0.5GF(Arxiv21) | Depth-wise Conv | 90.57 | 88.12 | 68.51 | 0.57 | 0.508 |
SCRFD-2.5GF(Arxiv21) | Basic Res | 93.78 | 92.16 | 77.87 | 0.67 | 2.53 |
- | - | - | - | - | - | - |
YOLOv5n | ShuffleNetv2 | 93.74 | 91.54 | 80.32 | 1.726 | 2.111 |
YOLOv5n-0.5 | ShuffleNetv2 | 90.76 | 88.12 | 73.82 | 0.447 | 0.571 |
Name | Easy | Medium | Hard | FLOPs(G) | Params(M) | Link |
---|---|---|---|---|---|---|
yolov5n-0.5 | 90.76 | 88.12 | 73.82 | 0.571 | 0.447 | Link: https://pan.baidu.com/s/1UgiKwzFq5NXI2y-Zui1kiA pwd: s5ow, https://drive.google.com/file/d/1XJ8w55Y9Po7Y5WP4X1Kg1a77ok2tL_KY/view?usp=sharing |
yolov5n | 93.61 | 91.52 | 80.53 | 2.111 | 1.726 | Link: https://pan.baidu.com/s/1xsYns6cyB84aPDgXB7sNDQ pwd: lw9j,https://drive.google.com/file/d/18oenL6tjFkdR1f5IgpYeQfDFqU4w3jEr/view?usp=sharing |
yolov5s | 94.33 | 92.61 | 83.15 | 5.751 | 7.075 | Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q,https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing |
yolov5m | 95.30 | 93.76 | 85.28 | 18.146 | 21.063 | Link: https://pan.baidu.com/s/1oePvd2K6R4-gT0g7EERmdQ pwd: jmtk |
yolov5l | 95.78 | 94.30 | 86.13 | 41.607 | 46.627 | Link: https://pan.baidu.com/s/11l4qSEgA2-c7e8lpRt8iFw pwd: 0mq7 |
- Download WIDERFace datasets.
- Download annotation files from google drive.
python3 train2yolo.py
python3 val2yolo.py
CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py --data data/widerface.yaml --cfg models/yolov5s.yaml --weights 'pretrained models'
python3 test_widerface.py --weights 'your test model' --img-size 640
cd widerface_evaluate
python3 evaluation.py
https://github.com/FeiGeChuanShu/ncnn_Android_face/tree/main/ncnn-android-yolov5_face
https://github.com/hpc203/yolov5-dnn-cpp-python-v2
https://github.com/ultralytics/yolov5
https://github.com/DayBreak-u/yolo-face-with-landmark
https://github.com/xialuxi/yolov5_face_landmark
https://github.com/biubug6/Pytorch_Retinaface
https://github.com/deepinsight/insightface
-
If you think this work is useful for you, please cite
@article{YOLO5Face, title = {YOLO5Face: Why Reinventing a Face Detector}, author = {Delong Qi and Weijun Tan and Qi Yao and Jingfeng Liu}, booktitle = {ArXiv preprint ArXiv:2105.12931}, year = {2021} }