/rgbif

Wrapper to the Global Biodiversity Information Facility API

Primary LanguageROtherNOASSERTION

rgbif

Build Status codecov.io rstudio mirror downloads cran version

rgbif gives you access to data from GBIF via their REST API. GBIF versions their API - we are currently using v1 of their API. You can no longer use their old API in this package - see ?rgbif-defunct.

Tutorials:

Package API

The rgbif package API follows the GBIF API, which has the following sections:

  • registry (http://www.gbif.org/developer/registry) - Metadata on datasets, and contributing organizations, installations, networks, and nodes
    • rgbif functions: dataset_metrics(), dataset_search(), dataset_suggest(), datasets(), enumeration(), enumeration_country(), installations(), networks(), nodes(), organizations()
    • Registry also includes the GBIF OAI-PMH service, which includes GBIF registry data only. rgbif functions: gbif_oai_get_records(), gbif_oai_identify(), gbif_oai_list_identifiers(), gbif_oai_list_metadataformats(), gbif_oai_list_records(), gbif_oai_list_sets()
  • species (http://www.gbif.org/developer/species) - Species names and metadata
    • rgbif functions: name_backbone(), name_lookup(), name_suggest(), name_usage()
  • occurrences (http://www.gbif.org/developer/occurrence) - Occurrences, both for the search and download APIs
    • rgbif functions: occ_count(), occ_data(), occ_download(), occ_download_cancel(), occ_download_cancel_staged(), occ_download_get(), occ_download_import(), occ_download_list(), occ_download_meta(), occ_get(), occ_issues(), occ_issues_lookup(), occ_metadata(), occ_search()

The GBIF maps API (http://www.gbif.org/developer/maps) is not implemented in rgbif, and are meant more for intergration with web based maps.

Installation

install.packages("rgbif")

Alternatively, install development version

install.packages("devtools")
devtools::install_github("ropensci/rgbif")
library("rgbif")

Note: Windows users have to first install Rtools to use devtools

Search for occurrence data

occ_search(scientificName = "Ursus americanus", limit = 50)
#> Records found [8424] 
#> Records returned [50] 
#> No. unique hierarchies [1] 
#> No. media records [43] 
#> No. facets [0] 
#> Args [scientificName=Ursus americanus, limit=50, offset=0, fields=all] 
#> # A tibble: 50 × 68
#>                name        key decimalLatitude decimalLongitude
#>               <chr>      <int>           <dbl>            <dbl>
#> 1  Ursus americanus 1229610234        44.06062        -71.92692
#> 2  Ursus americanus 1253300445        44.65481        -72.67270
#> 3  Ursus americanus 1229610216        44.06086        -71.92712
#> 4  Ursus americanus 1249277297        35.76789        -75.80894
#> 5  Ursus americanus 1249296297        39.08590       -105.24586
#> 6  Ursus americanus 1253314877        49.25782       -122.82786
#> 7  Ursus americanus 1249284297        43.68723        -72.32891
#> 8  Ursus americanus 1272078411        44.41793        -72.70709
#> 9  Ursus americanus 1262389246        43.80871        -72.20964
#> 10 Ursus americanus 1257415362        44.32746        -72.41007
#> # ... with 40 more rows, and 64 more variables: issues <chr>,
#> #   datasetKey <chr>, publishingOrgKey <chr>, publishingCountry <chr>,
#> #   protocol <chr>, lastCrawled <chr>, lastParsed <chr>, crawlId <int>,
#> #   extensions <chr>, basisOfRecord <chr>, taxonKey <int>,
#> #   kingdomKey <int>, phylumKey <int>, classKey <int>, orderKey <int>,
#> #   familyKey <int>, genusKey <int>, speciesKey <int>,
#> #   scientificName <chr>, kingdom <chr>, phylum <chr>, order <chr>,
#> #   family <chr>, genus <chr>, species <chr>, genericName <chr>,
#> #   specificEpithet <chr>, taxonRank <chr>, dateIdentified <chr>,
#> #   year <int>, month <int>, day <int>, eventDate <chr>, modified <chr>,
#> #   lastInterpreted <chr>, references <chr>, license <chr>,
#> #   identifiers <chr>, facts <chr>, relations <chr>, geodeticDatum <chr>,
#> #   class <chr>, countryCode <chr>, country <chr>, rightsHolder <chr>,
#> #   identifier <chr>, verbatimEventDate <chr>, datasetName <chr>,
#> #   verbatimLocality <chr>, gbifID <chr>, collectionCode <chr>,
#> #   occurrenceID <chr>, taxonID <chr>, recordedBy <chr>,
#> #   catalogNumber <chr>, http...unknown.org.occurrenceDetails <chr>,
#> #   institutionCode <chr>, rights <chr>, eventTime <chr>,
#> #   identificationID <chr>, occurrenceRemarks <chr>,
#> #   infraspecificEpithet <chr>, coordinateUncertaintyInMeters <dbl>,
#> #   informationWithheld <chr>

Or you can get the taxon key first with name_backbone(). Here, we select to only return the occurrence data.

key <- name_backbone(name='Helianthus annuus', kingdom='plants')$speciesKey
occ_search(taxonKey=key, limit=20)
#> Records found [21970] 
#> Records returned [20] 
#> No. unique hierarchies [1] 
#> No. media records [15] 
#> No. facets [0] 
#> Args [taxonKey=3119195, limit=20, offset=0, fields=all] 
#> # A tibble: 20 × 67
#>                 name        key decimalLatitude decimalLongitude
#>                <chr>      <int>           <dbl>            <dbl>
#> 1  Helianthus annuus 1249279611        34.04810       -117.79884
#> 2  Helianthus annuus 1315048347        34.04377       -116.94136
#> 3  Helianthus annuus 1305118889        18.40386        -66.04487
#> 4  Helianthus annuus 1249286909        32.58747        -97.10081
#> 5  Helianthus annuus 1253308332        29.67463        -95.44804
#> 6  Helianthus annuus 1262375813        29.82586        -95.45604
#> 7  Helianthus annuus 1262385911        32.78328        -96.70352
#> 8  Helianthus annuus 1265544678        32.58747        -97.10081
#> 9  Helianthus annuus 1262379231        34.04911       -117.80066
#> 10 Helianthus annuus 1265560496        34.12861       -118.20700
#> 11 Helianthus annuus 1269541227              NA               NA
#> 12 Helianthus annuus 1265895094        42.87784       -112.43226
#> 13 Helianthus annuus 1272087563        28.51021        -96.81979
#> 14 Helianthus annuus 1265590525        29.86693        -95.64667
#> 15 Helianthus annuus 1270045172        33.92958       -117.37322
#> 16 Helianthus annuus 1265553900        34.12932       -118.20648
#> 17 Helianthus annuus 1269543851        29.50991        -94.50006
#> 18 Helianthus annuus 1305119137        11.86735        -83.93555
#> 19 Helianthus annuus 1265590989        34.19005       -117.31644
#> 20 Helianthus annuus 1315048128        34.03212       -117.47091
#> # ... with 63 more variables: issues <chr>, datasetKey <chr>,
#> #   publishingOrgKey <chr>, publishingCountry <chr>, protocol <chr>,
#> #   lastCrawled <chr>, lastParsed <chr>, crawlId <int>, extensions <chr>,
#> #   basisOfRecord <chr>, taxonKey <int>, kingdomKey <int>,
#> #   phylumKey <int>, classKey <int>, orderKey <int>, familyKey <int>,
#> #   genusKey <int>, speciesKey <int>, scientificName <chr>, kingdom <chr>,
#> #   phylum <chr>, order <chr>, family <chr>, genus <chr>, species <chr>,
#> #   genericName <chr>, specificEpithet <chr>, taxonRank <chr>,
#> #   dateIdentified <chr>, year <int>, month <int>, day <int>,
#> #   eventDate <chr>, modified <chr>, lastInterpreted <chr>,
#> #   references <chr>, license <chr>, identifiers <chr>, facts <chr>,
#> #   relations <chr>, geodeticDatum <chr>, class <chr>, countryCode <chr>,
#> #   country <chr>, rightsHolder <chr>, identifier <chr>,
#> #   verbatimEventDate <chr>, datasetName <chr>, verbatimLocality <chr>,
#> #   gbifID <chr>, collectionCode <chr>, occurrenceID <chr>, taxonID <chr>,
#> #   recordedBy <chr>, catalogNumber <chr>,
#> #   http...unknown.org.occurrenceDetails <chr>, institutionCode <chr>,
#> #   rights <chr>, eventTime <chr>, identificationID <chr>,
#> #   coordinateUncertaintyInMeters <dbl>, occurrenceRemarks <chr>,
#> #   informationWithheld <chr>

Search for many species

Get the keys first with name_backbone(), then pass to occ_search()

splist <- c('Accipiter erythronemius', 'Junco hyemalis', 'Aix sponsa')
keys <- sapply(splist, function(x) name_backbone(name=x)$speciesKey, USE.NAMES=FALSE)
occ_search(taxonKey=keys, limit=5, hasCoordinate=TRUE)
#> Occ. found [2480598 (22), 2492010 (3042553), 2498387 (971214)] 
#> Occ. returned [2480598 (5), 2492010 (5), 2498387 (5)] 
#> No. unique hierarchies [2480598 (1), 2492010 (1), 2498387 (1)] 
#> No. media records [2480598 (1), 2492010 (5), 2498387 (1)] 
#> No. facets [] 
#> Args [taxonKey=2480598,2492010,2498387, hasCoordinate=TRUE, limit=5,
#>      offset=0, fields=all] 
#> First 10 rows of data from 2480598
#> 
#> # A tibble: 5 × 82
#>                      name        key decimalLatitude decimalLongitude
#>                     <chr>      <int>           <dbl>            <dbl>
#> 1 Accipiter erythronemius  920169861       -20.55244        -56.64104
#> 2 Accipiter erythronemius  920184036       -20.76029        -56.71314
#> 3 Accipiter erythronemius 1001096527       -27.58000        -58.66000
#> 4 Accipiter erythronemius 1001096518       -27.92000        -59.14000
#> 5 Accipiter erythronemius  686297260         5.26667        -60.73333
#> # ... with 78 more variables: issues <chr>, datasetKey <chr>,
#> #   publishingOrgKey <chr>, publishingCountry <chr>, protocol <chr>,
#> #   lastCrawled <chr>, lastParsed <chr>, crawlId <int>, extensions <chr>,
#> #   basisOfRecord <chr>, taxonKey <int>, kingdomKey <int>,
#> #   phylumKey <int>, classKey <int>, orderKey <int>, familyKey <int>,
#> #   genusKey <int>, speciesKey <int>, scientificName <chr>, kingdom <chr>,
#> #   phylum <chr>, order <chr>, family <chr>, genus <chr>, species <chr>,
#> #   genericName <chr>, specificEpithet <chr>, taxonRank <chr>,
#> #   coordinateUncertaintyInMeters <dbl>, year <int>, month <int>,
#> #   day <int>, eventDate <chr>, lastInterpreted <chr>, license <chr>,
#> #   identifiers <chr>, facts <chr>, relations <chr>, geodeticDatum <chr>,
#> #   class <chr>, countryCode <chr>, country <chr>, recordedBy <chr>,
#> #   catalogNumber <chr>, institutionCode <chr>, locality <chr>,
#> #   gbifID <chr>, collectionCode <chr>, modified <chr>, identifier <chr>,
#> #   created <chr>, occurrenceID <chr>, associatedSequences <chr>,
#> #   higherClassification <chr>, taxonID <chr>, sex <chr>,
#> #   establishmentMeans <chr>, continent <chr>, references <chr>,
#> #   institutionID <chr>, dynamicProperties <chr>, fieldNumber <chr>,
#> #   language <chr>, type <chr>, preparations <chr>,
#> #   occurrenceStatus <chr>, rights <chr>, verbatimEventDate <chr>,
#> #   higherGeography <chr>, nomenclaturalCode <chr>, endDayOfYear <chr>,
#> #   georeferenceVerificationStatus <chr>, datasetName <chr>,
#> #   verbatimLocality <chr>, otherCatalogNumbers <chr>,
#> #   startDayOfYear <chr>, accessRights <chr>, collectionID <chr>

Maps

Make a simple map of species occurrences.

splist <- c('Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa')
keys <- sapply(splist, function(x) name_backbone(name=x)$speciesKey, USE.NAMES=FALSE)
dat <- occ_search(taxonKey=keys, limit=100, return='data', hasCoordinate=TRUE)
library('plyr')
datdf <- ldply(dat)
gbifmap(datdf)

plot of chunk unnamed-chunk-8

Meta

  • Please report any issues or bugs.
  • License: MIT
  • Get citation information for rgbif in R doing citation(package = 'rgbif')
  • Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

This package is part of a richer suite called spocc - Species Occurrence Data, along with several other packages, that provide access to occurrence records from multiple databases.


ropensci_footer