A new start!
Tool for optimize CNN blocking
usage: run_optimizer.py [-h] [-s SCHEDULE] [-v] {basic,mem_explore, dataflow_explore} arch layer
positional arguments:
{basic,mem_explore, dataflow_explore} optimizer type
arch architecture specification
layer layer specification
optional arguments:
-h, --help show this help message and exit
-s SCHEDULE, --schedule SCHEDULE restriction of the schedule space this is optional but restricting the schedule space will accelerate the scipt significantly
-v, --verbose vebosity
Dataflow: Eyeriss
Memory Architecture: 3 level
Network: AlexNet Conv2 Batch16
python run_optimizer.py -v -s ./examples/schedule/eyeriss_alex_conv2.json basic ./examples/arch/3_level_mem_baseline_asic.json ./examples/layer/alex_conv2_batch16.json
Dataflow: TPU
Memory Architecture: 3 level
Network: AlexNet Conv2 Batch16
python run_optimizer.py -v -s ./examples/schedule/tpu.json basic ./examples/arch/3_level_mem_baseline_asic.json ./examples/layer/alex_conv2_batch16.json
Dataflow: Eyeriss
Memory Architecture: 3 level
Network: AlexNet Conv2 Batch16
python run_optimizer.py -v -s ./examples/schedule/eyeriss_alex_conv2.json mem_explore ./examples/arch/3_level_mem_explore.json ./examples/layer/alex_conv2_batch16.json
Dataflow: All
Memory Architecture: Eyeriss
Network: AlexNet Conv2 Batch16
python run_optimizer.py -v dataflow_explore ./examples/arch/3_level_mem_baseline_asic.json ./examples/layer/alex_conv2_batch16.json
or:
python ./tools/run_optimizer.py -v -n user_defined_pickle_filename dataflow_explore ./examples/arch/3_level_mem_baseline_asic.json ./examples/layer/alex_conv3_batch16.json