/MVHuman

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic 3D Human Generation

PyTorch implementation of paper "MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic 3D Human Generation", arXiv 2024.

MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic 3D Human Generation
Suyi Jiang, Haimin Luo, Haoran Jiang, Ziyu Wang, Jingyi Yu, Lan Xu

Demo

Installation

git clone git@github.com:SuezJiang/MVHuman.git
cd MVHuman
conda create -n mvhuman python==3.8.16
conda activate mvhuman
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -r requirements.txt

Tested on Ubuntu with RTX 3090.

Data

There are two example data in data, data/4_views is a simplified scene of 4 fullbody views, data/16_views is a complete scene of 8 fullbody and 8 upperbody views.

Get Started

You can paste your Hugging Face token in TOKEN. You can set the diffuser cache directory in config/config.py (change the cache_dir).

Generation

For the 16_views case,

$ python pipeline_multiview.py config=./config/deg_45_16view.yaml

For the 4_views case,

$ python pipeline_multiview.py config=./config/deg_90s_4view.yaml

Results will be written to {case_dir}/results.

Extention to new dataset

We follow similar data structure with nerfstudio.

Citation

@article{jiang2024mvhuman,
    title={MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic 3D Human Generation},
    author={Suyi, Jiang and Haimin, Luo and Haoran, Jiang and Ziyu, Wang and Jingyi, Yu and Lan, Xu},
    journal={arXiv preprint},
    year={2024}
    }