PyTorch implementation of paper "MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic 3D Human Generation", arXiv 2024.
MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic 3D Human Generation
Suyi Jiang, Haimin Luo, Haoran Jiang, Ziyu Wang, Jingyi Yu, Lan Xu
git clone git@github.com:SuezJiang/MVHuman.git
cd MVHuman
conda create -n mvhuman python==3.8.16
conda activate mvhuman
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -r requirements.txt
Tested on Ubuntu with RTX 3090.
There are two example data in data
, data/4_views
is a simplified scene of 4 fullbody views, data/16_views
is a complete scene of 8 fullbody and 8 upperbody views.
You can paste your Hugging Face token in TOKEN
.
You can set the diffuser cache directory in config/config.py
(change the cache_dir
).
For the 16_views case,
$ python pipeline_multiview.py config=./config/deg_45_16view.yaml
For the 4_views case,
$ python pipeline_multiview.py config=./config/deg_90s_4view.yaml
Results will be written to {case_dir}/results
.
We follow similar data structure with nerfstudio.
@article{jiang2024mvhuman,
title={MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic 3D Human Generation},
author={Suyi, Jiang and Haimin, Luo and Haoran, Jiang and Ziyu, Wang and Jingyi, Yu and Lan, Xu},
journal={arXiv preprint},
year={2024}
}