This repository contains a large, curated set of benchmark datasets for evaluating automatic keyphrase extraction algorithms. These datasets are all pre-processed using the Stanford CoreNLP suite and are available in XML format.
All datasets are stored according to the following, common structure:
dataset/
/test/ <- test documents
/train/ <- training documents (if available)
/dev/ <- validation documents (if available)
/src/ <- everything used to build the dataset
/references/ <- reference keyphrases in json format
Reference keyphrases, used for evaluating automatic keyphrase extraction
algorithms, are available in json format and named according to the following
rules: [split].[annotator].[stem]?.json
where
split
corresponds to the dataset split: test, train or devannotator
is the type of annotation: author, reader, combined, contr (controlled vocabulary), uncontr (free annotation)stem
(optional) indicates that stemming (using nltk Porter algorithm) is applied on reference keyphrases.
Below is a an example of reference file format:
{
"doc-1": [
[
"target detect"
],
[
"number of sensor",
"sensor number"
]
],
...
}
dataset | lang | nature | train | dev | test | Annotation | #kp (test) | #words (test) |
---|---|---|---|---|---|---|---|---|
CSTR [1] | en | Full papers | 130 | - | 500 | A | 5.4 | 11501.4 |
NUS [3] | en | Full papers | - | - | 211 | A+R | 11.0 | 8398.3 |
PubMed [5] | en | Full papers | - | - | 1320 | A | 5.4 | 5322.9 |
ACM [6] | en | Full papers | - | - | 2304 | A | 5.3 | 9197.6 |
Citeulike-180 [13] | en | Full papers | - | - | 182 | R | 5.4 | 8589.7 |
SemEval-2010 [10] | en | Full papers | 144 | - | 100 | A+R | 14.7 | 7961.2 |
Inspec [2] | en | Abstracts | 1000 | 500 | 500 | I (uncontr) | 9.8 | 134.6 |
TALN-Archives [14] | en/fr | Abstracts | - | - | 521/1207 | A | 4.0/4.1 | 123.1/141.0 |
KDD [9] | en | Abstracts | - | - | 755 | A | 4.1 | 190.7 |
WWW [9] | en | Abstracts | - | - | 1330 | A | 4.8 | 163.5 |
TermITH-Eval [11] | fr | Abstracts | - | - | 400 | I | 11.8 | 164.7 |
DUC-2001 [4] | en | News | - | - | 308 | R | 8.1 | 847.2 |
500N-KPCrowd [7] | en | News | 450 | - | 50 | R | 46.2 | 465.3 |
110-PT-BN-KP [12] | pt | News | 100 | - | 10 | R | 27.6 | 439.4 |
Wikinews-Keyphrase [8] | fr | News | - | - | 100 | R | 9.7 | 313.6 |
Annotation for gold keyphrases are performed by authors (A), readers (R) or professional indexers (I).
-
KEA: Practical automatic keyphrase extraction. Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., & Nevill-Manning, C. G. In Proceedings of the fourth ACM conference on Digital libraries. p. 254-255. 1999.
-
Improved automatic keyword extraction given more linguistic knowledge. Anette Hulth. In Proceedings of EMNLP 2003. p. 216-223.
-
Keyphrase Extraction in Scientific Publications. Thuy Dung Nguyen and Min-Yen Kan. In Proceedings of International Conference on Asian Digital Libraries 2007. p. 317-326.
-
Single Document Keyphrase Extraction Using Neighborhood Knowledge. Xiaojun Wan and Jianguo Xiao. In Proceedings of AAAI 2008. pp. 855-860.
-
Keyphrase extraction from single documents in the open domain exploiting linguistic and statistical methods. Alexander Thorsten Schutz. Master's thesis, National University of Ireland (2008).
-
Large dataset for keyphrases extraction. Krapivin, M., Autaeu, A., & Marchese, M. (2009). University of Trento.
-
Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization. Marujo, L., Gershman, A., Carbonell, J., Frederking, R., & Neto, J. P. In Proceedings of LREC 2012.
-
TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction. Adrien Bougouin, Florian Boudin, Béatrice Daille. In Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP), 2013.
-
Citation-Enhanced Keyphrase Extraction from Research Papers: A Supervised Approach. Cornelia Caragea, Florin Bulgarov, Andreea Godea and Sujatha Das Gollapalli. In Proceedings of EMNLP 2014. pp. 1435-1446.
-
How Document Pre-processing affects Keyphrase Extraction Performance. Florian Boudin, Hugo Mougard and Damien Cram. COLING 2016 Workshop on Noisy User-generated Text (WNUT).
-
TermITH-Eval: a French Standard-Based Resource for Keyphrase Extraction Evaluation. Adrien Bougouin, Sabine Barreaux, Laurent Romary, Florian Boudin and Béatrice Daille. Language Resources and Evaluation Conference (LREC), 2016.
-
Keyphrase Cloud Generation of Broadcast News. Luis Marujo, Márcio Viveiros, João Paulo da Silva Neto. In Proceedings of Interspeech 2011.
-
Human-competitive tagging using automatic keyphrase extraction. O. Medelyan, E. Frank, I. H. Witten. In Proceedings of EMNLP 2009.
-
TALN Archives: a digital archive of French research articles in Natural Language Processing. Florian Boudin. In Proceedings of TALN 2013.