/GNN-Communication-Networks

This is the repository for the collection of Graph-based Deep Learning for Communication Networks.

GNN-Communication-Networks

This is the repository for the collection of Graph-based Deep Learning for Communication Networks.

If you find this repository helpful, you may consider cite our relevant work:

  • Jiang W. Graph-based Deep Learning for Communication Networks: A Survey[J]. Computer Communications, 2022, 185:40-54. Link
    • For the surveyed studies in different scenarios, you may check survey.md

Advertisement: 欢迎大家关注我的微信公众号或知乎账号,都叫“网络与通信”,会定期推送网络与通信领域会议截止日期汇总、开源代码论文汇总等推文。

Other Surveys

  • He S, Xiong S, Ou Y, et al. An overview on the application of graph neural networks in wireless networks[J]. IEEE Open Journal of the Communications Society, 2021. Link
  • Suárez-Varela J, Almasan P, Ferriol-Galmés M, et al. Graph Neural Networks for Communication Networks: Context, Use Cases and Opportunities[J]. IEEE Network, 2022. Link
  • Tam P, Song I, Kang S, et al. Graph Neural Networks for Intelligent Modelling in Network Management and Orchestration: A Survey on Communications[J]. Electronics, 2022, 11(20): 3371. Link
  • Ivanov A, Tonchev K, Poulkov V, et al. Graph-Based Resource Allocation for Integrated Space and Terrestrial Communications[J]. Sensors, 2022, 22(15): 5778. Link
  • Lee M, Yu G, Dai H, et al. Graph Neural Networks Meet Wireless Communications: Motivation, Applications, and Future Directions[J]. IEEE Wireless Communications, 2022, 29(5): 12-19. Link
  • Li Y, Xie S, Wan Z, et al. Graph-powered learning methods in the Internet of Things: A survey[J]. Machine Learning with Applications, 2023, 11: 100441. Link
  • Dong G, Tang M, Wang Z, et al. Graph neural networks in IoT: A survey[J]. ACM Transactions on Sensor Networks, 2023, 19(2): 1-50. Link GNN4IoT Repository

Competition

  • Suárez-Varela J, Ferriol-Galmés M, López A, et al. The graph neural networking challenge: a worldwide competition for education in AI/ML for networks[J]. ACM SIGCOMM Computer Communication Review, 2021, 51(3): 9-16. Link
  • Ferriol-Galmés M, Suárez-Varela J, Rusek K, et al. Scaling Graph-based Deep Learning models to larger networks[J]. arXiv preprint arXiv:2110.01261, 2021. Link

Tool

  • Pujol-Perich D, Suárez-Varela J, Ferriol-Galmés M, et al. IGNNITION: fast prototyping of graph neural networks for communication networks[M]//Proceedings of the SIGCOMM'21 Poster and Demo Sessions. 2021: 71-73. Link
  • Pujol-Perich D, Suárez-Varela J, Ferriol M, et al. IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking Systems[J]. IEEE Network, 2021. Link Code

Literature

The list would be updated monthly.

2023

Journal

  • Ling C, Feng Z, Xu L, et al. An Edge Server Placement Algorithm Based on Graph Convolution Network[J]. IEEE Transactions on Vehicular Technology, 2023. Link
  • Zhu J, Li R, Ding G, et al. AoI-based Temporal Attention Graph Neural Network for Popularity Prediction and Content Caching[J]. IEEE Transactions on Cognitive Communications and Networking, 2023. Link
  • Wang D, Bai Y, Huang G, et al. Cache-Aided MEC for IoT: Resource Allocation Using Deep Graph Reinforcement Learning[J]. IEEE Internet of Things Journal, 2023. Link
  • Sivakumar N R, Nagarajan S M, Devarajan G G, et al. Enhancing network lifespan in wireless sensor networks using deep learning based Graph Neural Network[J]. Physical Communication, 2023: 102076. Link
  • Khalid Alkahtani H, Mahmood K, Khalid M, et al. Optimal Graph Convolutional Neural Network-Based Ransomware Detection for Cybersecurity in IoT Environment[J]. Applied Sciences, 2023, 13(8): 5167. Link
  • He Q, Wang Y, Wang X, et al. Routing Optimization With Deep Reinforcement Learning in Knowledge Defined Networking[J]. IEEE Transactions on Mobile Computing, 2023. Link
  • Wang Z, Hu J, Min G, et al. Spatial-Temporal Cellular Traffic Prediction for 5G and Beyond: A Graph Neural Networks-Based Approach[J]. IEEE Transactions on Industrial Informatics, 2023. Link
  • Hou J, Lu H, Nayak A. A GNN-based proactive caching strategy in NDN networks[J]. Peer-to-Peer Networking and Applications, 2023: 1-13. Link
  • Zhang X, Zhao H, Wei J, et al. Cooperative Trajectory Design of Multiple UAV Base Stations with Heterogeneous Graph Neural Networks[J]. IEEE Transactions on Wireless Communications, 2023. Link Code
  • Schynol L, Pesavento M. Coordinated sum-rate maximization in multicell MU-MIMO with deep unrolling[J]. IEEE Journal on Selected Areas in Communications, 2023. Link Code
  • Deng X, Zhu J, Pei X, et al. Flow Topology-based Graph Convolutional Network for Intrusion Detection in Label-Limited IoT Networks[J]. IEEE Transactions on Network and Service Management, 2023. Link
  • Fawaz H, Lesca J, Quang P T A, et al. Graph Convolutional Reinforcement Learning for Collaborative Queuing Agents[J]. IEEE Transactions on Network and Service Management, 2023. Link
  • Gu Y, She C, Quan Z, et al. Graph Neural Networks for Distributed Power Allocation in Wireless Networks: Aggregation Over-the-Air[J]. IEEE Transactions on Wireless Communications, 2023. Link Code
  • Wang Z, Li Z, Pan H, et al. Large-Scale Measurements and Prediction of DC-WAN Traffic[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(5): 1390-1405. Link Code
  • Liu W, Cai J, Zhu Y, et al. Load Balancing Inside Programmable Data Planes Based on Network Modeling Prediction Using a GNN with Network Behaviors[J]. Computer Networks, 2023: 109695. Link
  • Chen N, Shen S, Duan Y, et al. Non-Euclidean Graph-Convolution Virtual Network Embedding for Space–Air–Ground Integrated Networks[J]. Drones, 2023, 7(3): 165. Link
  • Gao H, Zhu Q, Wang W. Optimal deployment of large-scale wireless sensor networks based on graph clustering and matrix factorization[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 1-17. Link
  • Nerini M, Clerckx B. Overhead-Free Blockage Detection and Precoding Through Physics-Based Graph Neural Networks: LIDAR Data Meets Ray Tracing[J]. IEEE Wireless Communications Letters, 2023. Link
  • Pramod Kumar P, Sagar K. Reinforcement learning and neuro‐fuzzy GNN‐based vertical handover decision on internet of vehicles[J]. Concurrency and Computation: Practice and Experience, e7688, 2023. Link
  • Gao X, Wang J, Zhou M. The Research of Resource Allocation Method Based onGCN-LSTM in 5G NetworkK[J]. IEEE Communications Letters, 2023. Link
  • Lo W W, Kulatilleke G, Sarhan M, et al. XG-BoT: An explainable deep graph neural network for botnet detection and forensics[J]. Internet of Things, 2023: 100747. Link
  • Xu X, Liu Y, Chen Q, et al. Distributed Auto-Learning GNN for Multi-Cell Cluster-Free NOMA Communications[J]. IEEE Journal on Selected Areas in Communications, 2023. Link
  • Janu D, Kumar S, Singh K. A Graph Convolution Network Based Adaptive Cooperative Spectrum Sensing in Cognitive Radio Network[J]. IEEE Transactions on Vehicular Technology, 2023. Link
  • Wang Z, Zhou Y, Zou Y, et al. A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning[J]. IEEE Transactions on Wireless Communications, 2023. Link Code
  • Diao Z, Xie G, Wang X, et al. EC-GCN: A encrypted traffic classification framework based on multi-scale graph convolution networks[J]. Computer Networks, 2023: 109614. Link
  • Zhou X, Bilal M, Dou R, et al. Edge Computation Offloading With Content Caching in 6G-Enabled IoV[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. Link
  • Zhang H, Zeng K, Lin S. Federated Graph Neural Network for Fast Anomaly Detection in Controller Area Networks[J]. IEEE Transactions on Information Forensics and Security, 2023. Link
  • Ghasemzadeh P, Hempel M, Wang H, et al. GGCNN: An Efficiency-Maximizing Gated Graph Convolutional Neural Network Architecture for Automatic Modulation Identification[J]. IEEE Transactions on Wireless Communications, 2023. Link
  • Zeng L, Yang C, Huang P, et al. GNN at the Edge: Cost-Efficient Graph Neural Network Processing over Distributed Edge Servers[J]. IEEE Journal on Selected Areas in Communications, 2023. Link
  • Theodoropoulos T, Makris A, Kontopoulos I, et al. Graph neural networks for representing multivariate resource usage: A multiplayer mobile gaming case-study[J]. International Journal of Information Management Data Insights, 2023, 3(1): 100158. Link
  • Sun Z, Mo Y, Yu C. Graph Reinforcement Learning based Task offloading for Multi-access Edge Computing[J]. IEEE Internet of Things Journal, 2023. Link
  • Wei W, Fu L, Gu H, et al. GRL-PS: Graph embedding-based DRL approach for adaptive path selection[J]. IEEE Transactions on Network and Service Management, 2023. Link
  • Liu T, Li Z, Long H, et al. NT-GNN: Network Traffic Graph for 5G Mobile IoT Android Malware Detection[J]. Electronics, 2023, 12(4): 789. Link
  • Ren G, Cheng G, Fu N. Accurate Encrypted Malicious Traffic Identification via Traffic Interaction Pattern Using Graph Convolutional Network[J]. Applied Sciences, 2023, 13(3): 1483. Link

Conference

  • Kisanga P, Woungang I, Traore I, et al. Network Anomaly Detection Using a Graph Neural Network[C]//2023 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2023: 61-65. Link
  • Ge Z, Hou J, Nayak A. Forecasting SDN End-to-End Latency Using Graph Neural Network[C]//2023 International Conference on Information Networking (ICOIN). IEEE, 2023: 293-298. Link

Preprint

  • Du J, Luo T. Digital Twin Graph: Automated Domain-Agnostic Construction, Fusion, and Simulation of IoT-Enabled World[J]. arXiv preprint arXiv:2304.10018, 2023. Link
  • Chen L, Zhu J, Evans J. Graph Neural Networks for Power Allocation in Wireless Networks with Full Duplex Nodes[J]. arXiv preprint arXiv:2303.16113, 2023. Link
  • Zhou H, Kannan R, Swami A, et al. HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN[J]. arXiv preprint arXiv:2304.10013, 2023. Link Code
  • Jin Y, Daoutis M, Girdzijauskas S, et al. Learning Cellular Coverage from Real Network Configurations using GNNs[J]. arXiv preprint arXiv:2304.10328, 2023. Link Code
  • Paul R, Cohen K, Kedar G. Multi-Flow Transmission in Wireless Interference Networks: A Convergent Graph Learning Approach[J]. arXiv preprint arXiv:2303.15544, 2023. Link
  • Zhu J, Li R, Chen X, et al. Semantics-enhanced Temporal Graph Networks for Content Caching and Energy Saving[J]. arXiv preprint arXiv:2301.12355, 2023. Link
  • Perera T, Atapattu S, Fang Y, et al. Flex-Net: A Graph Neural Network Approach to Resource Management in Flexible Duplex Networks[J]. arXiv preprint arXiv:2301.11166, 2023. Link Code
  • Xiao B, Li R, Wang F, et al. Stochastic Graph Neural Network-based Value Decomposition for MARL in Internet of Vehicles[J]. arXiv preprint arXiv:2303.13213, 2023. Link
  • He H, Yu X, Zhang J, et al. Message Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems[J]. arXiv preprint arXiv:2302.06896, 2023. Link

2022

Journal

  • NaderiAlizadeh N, Eisen M, Ribeiro A. State-Augmented Learnable Algorithms for Resource Management in Wireless Networks[J]. IEEE Transactions on Signal Processing, 2022, 70: 5898-5912. Link Code
  • Zhao Z, Verma G, Rao C, et al. Link scheduling using graph neural networks[J]. IEEE Transactions on Wireless Communications, 2022. Link Code
  • Zhao X, Wu C. Large-scale Machine Learning Cluster Scheduling via Multi-agent Graph Reinforcement Learning[J]. IEEE Transactions on Network and Service Management, 2022. Link
  • Chen J, Xiao W, Li X, et al. A routing optimization method for software-defined optical transport networks based on ensembles and reinforcement learning[J]. Sensors, 2022, 22(21): 8139. Link
  • Bernárdez G, Suárez-Varela J, López A, et al. MAGNNETO: A Graph Neural Network-based Multi-Agent system for Traffic Engineering[J]. IEEE Transactions on Cognitive Communications and Networking, 2023. Link Code
  • Nikoloska I, Simeone O. Modular meta-learning for power control via random edge graph neural networks[J]. IEEE Transactions on Wireless Communications, 2022, 22(1): 457-470. Link
  • Qiu R, Bao J, Li Y, et al. Virtual network function deployment algorithm based on graph convolution deep reinforcement learning[J]. The Journal of Supercomputing, 2022: 1-22. Link
  • Wang R, Zhang J, Gu Z, et al. Edge-enhanced graph neural network for DU-CU placement and lightpath provision in X-Haul networks[J]. Journal of Optical Communications and Networking, 2022, 14(10): 828-839. Link
  • Ye M, Zhang J, Guo Z, et al. FlexDATE: Flexible and Disturbance-Aware Traffic Engineering With Reinforcement Learning in Software-Defined Networks[J]. IEEE/ACM Transactions on Networking, 2022. Link
  • Huoh T L, Luo Y, Li P, et al. Flow-based Encrypted Network Traffic Classification with Graph Neural Networks[J]. IEEE Transactions on Network and Service Management, 2022. Link
  • Tan K, Bremner D, Le Kernec J, et al. Graph neural network-based cell switching for energy optimization in ultra-dense heterogeneous networks[J]. Scientific Reports, 2022, 12(1): 1-18. Link
  • Liu T, Li P, Gu Y, et al. S-Glint: Secure Federated Graph Learning with Traffic Throttling and Flow Scheduling[J]. IEEE Transactions on Green Communications and Networking, 2022. Link
  • Yang R, Yu A, Cai L, et al. Subspace clustering via graph auto-encoder network for unknown encrypted traffic recognition[J]. Cybersecurity, 2022, 5(1): 1-15. Link
  • Zhang S, Yin B, Zhang W, et al. Topology aware deep learning for wireless network optimization[J]. IEEE Transactions on Wireless Communications, 2022. Link
  • Jiang W, Bai Y. APGNN: Alarm Propagation Graph Neural Network for fault detection and alarm root cause analysis[J]. Computer Networks, 2022: 109485. Link
  • Sun Y, Zhang J, Zhang Y, et al. Environment information-based channel prediction method assisted by graph neural network[J]. China Communications, 2022, 19(11): 1-15. Link
  • He S, Xiong S, Zhang W, et al. GBLinks: GNN-based beam selection and link activation for ultra-dense D2D mmWave networks[J]. IEEE Transactions on Communications, 2022. Link
  • Yuan S, Zhang Y, Ma T, et al. Graph convolutional reinforcement learning for resource allocation in hybrid overlay–underlay cognitive radio network with network slicing[J]. IET Communications, 2022. Link
  • Granato G, Martino A, Baiocchi A, et al. Graph-Based Multi-Label Classification for WiFi Network Traffic Analysis[J]. Applied Sciences, 2022, 12(21): 11303. Link
  • Yang L, Wei Y, Yu F R, et al. Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph Convolutional Network-based Deep Reinforcement Learning[J]. IEEE Internet of Things Journal, 2022. Link
  • Jia Y, Zhang C, Huang Y, et al. Lyapunov Optimization Based Mobile Edge Computing for Internet of Vehicles Systems[J]. IEEE Transactions on Communications, 2022, 70(11): 7418-7433. Link
  • Zhang Y, Li A, Li J, et al. SpecKriging: GNN-based Secure Cooperative Spectrum Sensing[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9936-9946. Link
  • Kim J, Lee H, Hong S E, et al. A Bipartite Graph Neural Network Approach for Scalable Beamforming Optimization[J]. IEEE Transactions on Wireless Communications, 2022. Link
  • Huang W, Yuan B, Wang S, et al. A generic intelligent routing method using deep reinforcement learning with graph neural networks[J]. IET Communications, 2022. Link
  • Hou J, Xia H, Lu H, et al. A Graph Neural Network Approach for Caching Performance Optimization in NDN Networks[J]. IEEE Access, 2022. Link
  • Jiang M, Li Z, Fu P, et al. Accurate mobile-app fingerprinting using flow-level relationship with graph neural networks[J]. Computer Networks, 2022, 217: 109309. Link Code
  • He S, Xiong S, An Z, et al. An Unsupervised Deep Unrolling Framework for Constrained Optimization Problems in Wireless Networks[J]. IEEE Transactions on Wireless Communications, 2022. Link
  • Caville E, Lo W W, Layeghy S, et al. Anomal-E: A self-supervised network intrusion detection system based on graph neural networks[J]. Knowledge-Based Systems, 2022: 110030. Link
  • Choi H, Pack S. Cooperative Downloading for LEO Satellite Networks: A DRL-Based Approach[J]. Sensors, 2022, 22(18): 6853. Link
  • Zhang Z, Hua Q S, Zhang X, et al. DAG Scheduling with Communication Delays Based on Graph Convolutional Neural Network[J]. Wireless Communications and Mobile Computing, 2022, 2022. Link Code
  • Eswaramoorthi R, Leeban Moses M, Sahul Hameed J B, et al. Deep graph neural network optimized with fertile field algorithm based detection model for uplink multiuser massive multiple‐input and multiple‐output system[J]. Transactions on Emerging Telecommunications Technologies, 2022: e4614. Link
  • Almasan P, Suárez-Varela J, Rusek K, et al. Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case[J]. Computer Communications, 2022. Link Code
  • Xu L, Huang Y C, Xue Y, et al. Deep Reinforcement Learning-based Routing and Spectrum Assignment of EONs by Exploiting GCN and RNN for Feature Extraction[J]. Journal of Lightwave Technology, 2022. Link
  • Li K, Ni W, Yuan X, et al. Deep Graph-based Reinforcement Learning for Joint Cruise Control and Task Offloading for Aerial Edge Internet-of-Things (EdgeIoT)[J]. IEEE Internet of Things Journal, 2022. Link
  • Lan J, Lu J Z, Wan G G, et al. E-minBatch GraphSAGE: An Industrial Internet Attack Detection Model[J]. Security and Communication Networks, 2022, 2022. Link
  • Feng Y, Chen J, Liu Z, et al. Full Graph Autoencoder for One-Class Group Anomaly Detection of IIoT System[J]. IEEE Internet of Things Journal, 2022. Link
  • Lee J, Cheng Y, Niyato D, et al. Intelligent Resource Allocation in Joint Radar-Communication With Graph Neural Networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11120-11135. Link
  • Zhang Y, Yang C, Huang K, et al. Intrusion detection of industrial internet-of-things based on reconstructed graph neural networks[J]. IEEE Transactions on Network Science and Engineering, 2022. Link
  • Wang X, Fu L, Cheng N, et al. Joint Flying Relay Location and Routing Optimization for 6G UAV–IoT Networks: A Graph Neural Network-Based Approach[J]. Remote Sensing, 2022, 14(17): 4377. Link
  • Zhang X, Zhang Z, Yang L. Learning-Based Resource Allocation in Heterogeneous Ultra Dense Network[J]. IEEE Internet of Things Journal, 2022. Link
  • Liu Z, Qiu H, Guo W, et al. NIE-GAT: Node Importance Evaluation Method for Inter-Domain Routing Network Based on Graph Attention Network[J]. Journal of Computational Science, 2022: 101885. Link
  • Zhang X. Path Selection Strategy of Communication Network Based on Graph Convolutional Neural Network[J]. Security and Communication Networks, 2022, 2022. Link
  • Zheng X, Huang W, Li H, et al. Research on Generalized Intelligent Routing Technology Based on Graph Neural Network[J]. Electronics, 2022, 11(18): 2952. Link
  • Peng Y, Liu C, Liu S, et al. SmartTRO: Optimizing topology robustness for Internet of Things via deep reinforcement learning with graph convolutional networks[J]. Computer Networks, 2022: 109385. Link
  • Chen N, Zhang P, Kumar N, et al. Spectral graph theory-based virtual network embedding for vehicular fog computing: A deep reinforcement learning architecture[J]. Knowledge-Based Systems, 2022, 257: 109931. Link
  • Guo J, Yang C. Learning power allocation for multi-cell-multi-user systems with heterogeneous graph neural networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 884-897. Link
  • Wang Z, Eisen M, Ribeiro A. Learning decentralized wireless resource allocations with graph neural networks[J]. IEEE Transactions on Signal Processing, 2022, 70: 1850-1863. Link
  • Huang R, Guan W, Zhai G, et al. Deep Graph Reinforcement Learning Based Intelligent Traffic Routing Control for Software-Defined Wireless Sensor Networks[J]. Applied Sciences, 2022, 12(4): 1951. Link
  • Fang Y, Ergüt S, Patras P. SDGNet: A Handover-Aware Spatiotemporal Graph Neural Network for Mobile Traffic Forecasting[J]. IEEE Communications Letters, 2022, 26(3): 582-586. Link
  • Li P, Wang L, Wu W, et al. Graph Neural Network-Based Scheduling for Multi-UAV-Enabled Communications in D2D Networks[J]. Digital Communications and Networks, 2022. Link
  • Govindaraju S, Vinisha W V R, Shajin F H, et al. Intrusion detection framework using auto‐metric graph neural network optimized with hybrid woodpecker mating and capuchin search optimization algorithm in IoT network[J]. Concurrency and Computation: Practice and Experience, e7197, 2022. Link
  • Zhou X, Liang W, Li W, et al. Hierarchical adversarial attacks against graph neural network based IoT network intrusion detection system[J]. IEEE Internet of Things Journal, 2022. Link
  • Cao H, Zhu W, Feng W, et al. Robust beamforming based on graph attention networks for IRS-assisted Satellite IoT Communications[J]. Entropy, 2022, 24(3): 326. Link
  • Peng S, Nie J, Shu X, et al. A multi-view framework for BGP anomaly detection via graph attention network[J]. Computer Networks, 2022, 214: 109129. Link
  • Yan B, Liu Q, Shen J L, et al. Flowlet-level multipath routing based on graph neural network in OpenFlow-based SDN[J]. Future Generation Computer Systems, 2022, 134: 140-153. Link
  • Almasan P, Xiao S, Cheng X, et al. ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning[J]. Computer Networks, 2022, 214: 109166. Link
  • Chen B, Zhu D, Wang Y, et al. An Approach to Combine the Power of Deep Reinforcement Learning with a Graph Neural Network for Routing Optimization[J]. Electronics, 2022, 11(3): 368. Link
  • Ma S, Yao H, Mai T, et al. Graph Convolutional Network Aided Virtual Network Embedding for Internet of Thing[J]. IEEE Transactions on Network Science and Engineering, 2022. Link
  • Ferriol-Galmés M, Suárez-Varela J, Paillissé J, et al. Building a digital twin for network optimization using graph neural networks[J]. Computer Networks, 2022: 109329. Link Code
  • Li Y, Li J, Pang J. A Graph Attention Mechanism-Based Multiagent Reinforcement-Learning Method for Task Scheduling in Edge Computing[J]. Electronics, 2022, 11(9): 1357. Link
  • He M, Zhuang L, Yang S, et al. An Energy-Efficient VNE Algorithm Based on Bidirectional Long Short-Term Memory[J]. Journal of Network and Systems Management, 2022, 30(3): 1-29. Link
  • Wang T, Chen S, Zhu Y, et al. LinkSlice: Fine-grained Network Slice Enforcement Based on Deep Reinforcement Learning[J]. IEEE Journal on Selected Areas in Communications, 2022. Link
  • Zhang Z, Jiang T, Yu W. Learning Based User Scheduling in Reconfigurable Intelligent Surface Assisted Multiuser Downlink[J]. IEEE Journal of Selected Topics in Signal Processing, 2022. Link
  • Wei L, Luo H X, Zhai S L, et al. GCN based virtual resource allocation scheme for power internet of things[J]. Journal of Computational Methods in Sciences and Engineering, 2022 (Preprint): 1-14. Link
  • Xiao J, Yang L, Zhong F, et al. Robust anomaly-based intrusion detection system for in-vehicle network by graph neural network framework[J]. Applied Intelligence, 2022: 1-24. Link

Conference

  • Zhang J, Jiang Y, Liu X, et al. Design of Retransmission Mechanism for Decentralized Inference with Graph Neural Networks[C]//2022 27th Asia Pacific Conference on Communications (APCC). IEEE, 2022: 515-519. Link
  • Chen L, Yan N, Zhang B, et al. A General Backdoor Attack to Graph Neural Networks Based on Explanation Method[C]//2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE, 2022: 759-768. Link
  • Boukhtouta A, Madi T, Pourzandi M, et al. Cloud Native Applications Profiling using a Graph Neural Networks Approach[C]//2022 IEEE Future Networks World Forum (FNWF). IEEE, 2022: 220-227. Link
  • Yan N, Wen Y, Chen L, et al. Deepro: Provenance-based APT Campaigns Detection via GNN[C]//2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE, 2022: 747-758. Link
  • Liu Y, She C, Hardjawana W, et al. Graph Neural Networks for Timely Updates of Short Packets in Interference-Limited Networks[C]//2022 56th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2022: 1050-1054. Link
  • Coleman J, Kiamari M, Clark L, et al. Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things[C]//MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM). IEEE, 2022: 1070-1075. Link Code
  • Li B, Swami A, Segarra S. Power allocation for wireless federated learning using graph neural networks[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 5243-5247. Link Code
  • Wang H, Zhang R, Cheng X, et al. Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network[C]//2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2022: 221-225. Link
  • Tonchev K, Neshov N, Ivanov A, et al. Automatic Modulation Classification using Graph Convolutional Neural Networks for Time-frequency Representation[C]//2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC). IEEE, 2022: 75-79. Link
  • Bai Y, Wang D, Song B. A Knowledge Graph-based Cooperative Caching Scheme in MEC-enabled Heterogeneous Networks[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 5959-5964. Link
  • Kim J, Lee H, Park S H. Autoencoding Graph Neural Networks for Scalable Transceiver Design[C]//2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). IEEE, 2022: 1-2. Link
  • Su Y, Zhou H, Deng Y. D2D-Based Cellular-Connected UAV Swarm Control Optimization via Graph-Aware DRL[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 1326-1331. Link
  • Randall M, Belzarena P, Larroca F, et al. Deep Reinforcement Learning and Graph Neural Networks for Efficient Resource Allocation in 5G Networks[C]//2022 IEEE Latin-American Conference on Communications (LATINCOM). IEEE, 2022: 1-6. Link Code
  • Lent R. Dynamic Routing in Challenged Networks with Graph Neural Networks[C]//2022 IEEE Latin-American Conference on Communications (LATINCOM). IEEE, 2022: 1-6. Link
  • Chen R, Shi H, Wu J, et al. GCNPart: Interference-Aware Resource Partitioning Framework with Graph Convolutional Neural Networks and Deep Reinforcement Learning[C]//Algorithms and Architectures for Parallel Processing: 22nd International Conference, ICA3PP 2022, Copenhagen, Denmark, October 10–12, 2022, Proceedings. Cham: Springer Nature Switzerland, 2023: 568-589. Link
  • Li N, Iosifidis A, Zhang Q. Graph Reinforcement Learning-based CNN Inference Offloading in Dynamic Edge Computing[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 982-987. Link
  • Zhu H, Lu J. Graph-based Intrusion Detection System Using General Behavior Learning[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 2621-2626. Link
  • Li C, Li F, Yu M, et al. Insider Threat Detection Using Generative Adversarial Graph Attention Networks[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 2680-2685. Link
  • Tonchev K, Ivanov A, Neshov N, et al. Learning Graph Convolutional Neural Networks to Predict Radio Environment Maps[C]//2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC). IEEE, 2022: 392-395. Link
  • Zhang H, Tian Q, Han Y. Multi channel spectrum prediction algorithm based on GCN and LSTM[C]//2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). IEEE, 2022: 1-5. Link
  • Zhu R, Luo X, Yao J, et al. Prediction of Cellular Network Channel Utilization Based on Graph Convolutional Networks[C]//2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2022: 1233-1238. Link
  • He S, Ou Y, Wang L, et al. Representation Learning of Knowledge Graph for Wireless Communication Networks[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 1338-1343. Link
  • Li C, Lou J, Liu S, et al. Shapley Explainer-An Interpretation Method for GNNs Used in SDN[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 5534-5540. Link
  • Xu H, Li S, Cheng Z, et al. TrafficGCN: Mobile Application Encrypted Traffic Classification Based on GCN[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 891-896. Link
  • Geng Z, She C, Zhang D, et al. Zero-Shot Recurrent Graph Neural Networks for Beam Prediction in Non-Terrestrial Networks[C]//2022 IEEE Globecom Workshops (GC Wkshps). IEEE, 2022: 1400-1405. Link
  • Herath J D, Wakodikar P P, Yang P, et al. CFGExplainer: Explaining Graph Neural Network-Based Malware Classification from Control Flow Graphs[C]//2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2022: 172-184. Link Code
  • Yaqoob M, Trestian R, Nguyen H X. Data-driven network performance prediction for B5G networks: a graph neural network approach[C]//2022 IEEE Ninth International Conference on Communications and Electronics (ICCE). IEEE, 2022: 55-60. Link
  • Hara T, Sasabe M. Deep Reinforcement Learning with Graph Neural Networks for Capacitated Shortest Path Tour based Service Chaining[C]//2022 18th International Conference on Network and Service Management (CNSM). IEEE, 2022: 19-27. Link
  • Bhavanasi S S, Pappone L, Esposito F. Routing with Graph Convolutional Networks and Multi-Agent Deep Reinforcement Learning[C]//2022 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2022: 72-77. Link
  • Zhou X, Zhang J, Wen C K, et al. Extrinsic Graph Neural Network-Aided Expectation Propagation for Turbo-MIMO Receiver[C]//2022 International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2022: 1-6. Link
  • Li Y, Xie Q, Wang W, et al. GCN-Based Topology Design for Decentralized Federated Learning in IoV[C]//2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2022: 1-6. Link
  • Yang L, Cheng M, Qu J, et al. GraphHO: A Graph-based Handover Optimization System for Cellular Networks[C]//2022 International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2022: 1-6. Link
  • Sun X, Yang J. HetGLM: Lateral Movement Detection by Discovering Anomalous Links with Heterogeneous Graph Neural Network[C]//2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). IEEE, 2022: 404-411. Link
  • Hou Q, Lee M, Yu G, et al. Learning to Optimize Resource in Dynamic Wireless Environment via Meta-Gating Graph Neural Network[C]//2022 International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2022: 1-6. Link
  • Heo D N, Lee D, Kim H G, et al. Reinforcement Learning of Graph Neural Networks for Service Function Chaining in Computer Network Management[C]//2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2022: 1-6. Link
  • Jin Y, Vannella F, Bouton M, et al. A Graph Attention Learning Approach to Antenna Tilt Optimization[C]//2022 1st International Conference on 6G Networking (6GNet). IEEE, 2022: 1-5. Link
  • Ghasemzadeh P, Hempel M, Sharif H. A Robust Graph Convolutional Neural Network-Based Classifier for Automatic Modulation Recognition[C]//2022 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2022: 907-912. Link
  • Wu J, Wang F, Yao H, et al. Autonomous Operation and Maintenance Technology of Optical Network Based on Graph Neural Network[C]//2022 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2022: 766-772. Link
  • Harris D, Raz D, Sagiv P. Bandwidth resource allocation in integrated access and backhaul networks[C]//Proceedings of the ACM SIGCOMM Workshop on 5G and Beyond Network Measurements, Modeling, and Use Cases. 2022: 1-7. Link
  • Hoarau K, Tournoux P U, Razafindralambo T. BGNN: Detection of BGP Anomalies Using Graph Neural Networks[C]//2022 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2022: 1-6. Link Code
  • Schynol L, Pesavento M. Deep Unfolding in Multicell MU-MIMO[C]//2022 30th European Signal Processing Conference (EUSIPCO). IEEE, 2022: 1631-1635. Link Code
  • Mohammedi E H, Lavinal E, Fleury G. Detecting and locating configuration errors in IP VPNs with Graph Neural Networks[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-6. Link
  • Rusek K, Almasan P, Suárez-Varela J, et al. Fast Traffic Engineering by Gradient Descent with Learned Differentiable Routing[C]. International Conference on Network and Service Management (CNSM), 2022. Link
  • Zhao R, Deng X, Wang Y, et al. Flow Sequence-Based Anonymity Network Traffic Identification with Residual Graph Convolutional Networks[C]//2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS). IEEE, 2022: 1-10. Link
  • Hou J, Lu H, Nayak A. GNN-GM: A Proactive Caching Scheme for Named Data Networking[C]//2022 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2022: 1-6. Link
  • Yen C C, Sun W, Purmehdi H, et al. Graph Neural Network based Root Cause Analysis Using Multivariate Time-series KPIs for Wireless Networks[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-7. Link
  • Li Y, Li R, Zhou Z, et al. GraphDDoS: Effective DDoS Attack Detection Using Graph Neural Networks[C]//2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2022: 1275-1280. Link
  • Houidi O, Bakri S, Zeghlache D. Multi-Agent Graph Convolutional Reinforcement Learning for Intelligent Load Balancing[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-6. Link
  • Ji Y, Huang H H. NestedGNN: Detecting Malicious Network Activity with Nested Graph Neural Networks[C]//ICC 2022-IEEE International Conference on Communications. IEEE, 2022: 2694-2699. Link
  • Yu Q, Wang H, Li T, et al. Network Traffic Overload Prediction with Temporal Graph Attention Convolutional Networks[C]//2022 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2022: 885-890. Link
  • Jin Y, Daoutis M, Girdzijauskas S, et al. Open World Learning Graph Convolution for Latency Estimation in Routing Networks[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 1-8. Link Code
  • Paudel R, Huang H H. Pikachu: Temporal Walk Based Dynamic Graph Embedding for Network Anomaly Detection[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-7. Link
  • Oshio K, Takada S, Han C, et al. Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique[C]//2022 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2022: 1-3. Link
  • Hui N, Sun Q, Wang Y, et al. Wireless Resource Allocation based on Multiplexing and Isolation in Sliced 5G Networks[C]//2022 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2022: 1629-1634. Link
  • NaderiAlizadeh N, Eisen M, Ribeiro A. Adaptive Wireless Power Allocation with Graph Neural Networks[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 5213-5217. Link
  • Zhao Z, Verma G, Swami A, et al. Delay-Oriented Distributed Scheduling Using Graph Neural Networks[C]. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 8902-8906. Link Code
  • Lo W W, Layeghy S, Sarhan M, et al. E-GraphSAGE: A Graph Neural Network based Intrusion Detection System[C]. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-9. Link
  • Wang M, Hui L, Cui Y, et al. xNet: Improving Expressiveness and Granularity for Network Modeling with Graph Neural Networks[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, 2022: 2028-2037. Link
  • Happ M, Du J L, Herlich M, et al. Exploring the Limitations of Current Graph Neural Networks for Network Modeling[C]. Proceedings of the IEEE/IFIP Network Operations and Management Symposium, 2022. Link
  • Güemes-Palau C, Almasan P, Xiao S, et al. Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-5. Link
  • Ferriol-Galmés M, Rusek K, Suárez-Varela J, et al. Routenet-erlang: A graph neural network for network performance evaluation[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, 2022: 2018-2027. Link Code
  • Zhu J, Li R, Zhao Z, et al. AoI-based Temporal Attention Graph Neural Network for Popularity Prediction in ICN[C]//2022 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2022: 1284-1289. Link
  • Dai Z, Liu C H, Ye Y, et al. AoI-minimal UAV Crowdsensing by Model-based Graph Convolutional Reinforcement Learning[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, 2022: 1029-1038. Link
  • Zhao Z, Swami A, Segarra S. Distributed Link Sparsification for Scalable Scheduling Using Graph Neural Networks[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 5308-5312. Link
  • Zhu X, Zhang Y, Zhang Z, et al. Interpretability Evaluation of Botnet Detection Model based on Graph Neural Network[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022: 1-6. Link
  • Farreras M, Soto P, Camelo M, et al. Predicting network performance using GNNs: generalization to larger unseen networks[C]//NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-6. Link
  • Zhang Z, Jiang T, Yu W. User Scheduling Using Graph Neural Networks for Reconfigurable Intelligent Surface Assisted Multiuser Downlink Communications[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 8892-8896. Link
  • Lian L, Chen N, Ou P, et al. Mobile Edge Cooperative Caching Strategy Based on Spatio-temporal Graph Convolutional Model[C]//2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2022: 1396-1401. Link
  • Ferriol-Galmés M, Cheng X, Shi X, et al. FlowDT: A Flow-Aware Digital Twin for Computer Networks[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 8907-8911. Link
  • Kosasih A, Onasis V, Hardjawana W, et al. Graph Neural Network Aided Expectation Propagation Detector for MU-MIMO Systems[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2022: 1212-1217. Link

Workshop

  • Ye W, Hu X, Liu T, et al. 5GNN: extrapolating 5G measurements through GNNs[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 36-41. Link Code
  • Giakatos D P, Kostoglou S, Sermpezis P, et al. Benchmarking graph neural networks for internet routing data[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 1-6. Link Code
  • Fernandes D M, Krolikowski J, Houidi Z B, et al. Cross-network transferable neural models for WLAN interference estimation[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 30-35. Link
  • Kiamari M, Krishnamachari B. Gcnscheduler: Scheduling distributed computing applications using graph convolutional networks[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 13-17. Link
  • Randall M, Belzarena P, Larroca F, et al. GROWS: improving decentralized resource allocation in wireless networks through graph neural networks[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 24-29. Link Code
  • Jaeger B, Helm M, Schwegmann L, et al. Modeling TCP performance using graph neural networks[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 18-23. Link Code (access required)
  • Wang T Y, Zhou H, Kannan R, et al. Throughput optimization in heterogeneous MIMO networks: a GNN-based approach[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 42-47. Link
  • Latif H, Paillissé J, Yang J, et al. Unveiling the potential of graph neural networks for BGP anomaly detection[C]//Proceedings of the 1st International Workshop on Graph Neural Networking. 2022: 7-12. Link

Preprint

  • Liu Q, Li X, Li Z, et al. Graph Reinforcement Learning Application to Co-operative Decision-Making in Mixed Autonomy Traffic: Framework, Survey, and Challenges[J]. arXiv preprint arXiv:2211.03005, 2022. Link Code
  • Mehrabi M, Masoudimansour W, Zhang Y, et al. Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter Configuration in Cellular Network[J]. arXiv preprint arXiv:2301.03412, 2022. Link
  • Zhao Z, Radojicic B, Verma G, et al. Delay-aware Backpressure Routing Using Graph Neural Networks[J]. arXiv preprint arXiv:2211.10748, 2022. Link Code
  • Li B, Verma G, Segarra S. Graph-based Algorithm Unfolding for Energy-aware Power Allocation in Wireless Networks[J]. arXiv preprint arXiv:2201.11799, 2022. Link Code
  • Zhao J, Yang C. Graph Reinforcement Learning for Predictive Power Allocation to Mobile Users[J]. arXiv preprint arXiv:2203.03906, 2022. Link
  • Geyer F, Scheffler A, Bondorf S. Network Calculus with Flow Prolongation--A Feedforward FIFO Analysis enabled by ML[J]. arXiv preprint arXiv:2202.03004, 2022. Link
  • Xu X, Liu Y, Mu X, et al. Artificial Intelligence Enabled NOMA Towards Next Generation Multiple Access[J]. arXiv preprint arXiv:2206.04992, 2022. Link
  • Li H, Wang J, Wang Y. Edge Graph Neural Networks for Massive MIMO Detection[J]. arXiv preprint arXiv:2206.06979, 2022. Link
  • He H, Kosasihy A, Yu X, et al. Graph Neural Network Enhanced Approximate Message Passing for MIMO Detection[J]. arXiv preprint arXiv:2205.10620, 2022. Link
  • Kosasih A, Onasis V, Miloslavskaya V, et al. Graph Neural Network Aided MU-MIMO Detectors[J]. arXiv preprint arXiv:2206.09381, 2022. Link Code
  • Shen Y, Zhang J, Song S H, et al. Graph Neural Networks for Wireless Communications: From Theory to Practice[J]. arXiv preprint arXiv:2203.10800, 2022. Link
  • Azeez S. Graph-based Deep Learning for Spatial Reuse Optimization in Dense WLAN Deployments[J]. 2022. Link
  • Lima V, Eisen M, Gatsis K, et al. Graph Reinforcement Learning for Wireless Control Systems: Large-Scale Resource Allocation over Interference Channels[J]. arXiv preprint arXiv:2201.09859, 2022. Link

2021

Journal

  • Shen Y, Shi Y, Zhang J, et al. Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 101-115. Link Code
  • Lee M, Yu G, Dai H. Decentralized Inference with Graph Neural Networks in Wireless Communication Systems[J]. IEEE Transactions on Mobile Computing, 2021. Link
  • Li N, Jia S, Li Q. Traffic Message Channel Prediction Based on Graph Convolutional Network[J]. IEEE Access, 2021, 9: 135423-135431. Link
  • Chowdhury A, Verma G, Rao C, et al. Unfolding wmmse using graph neural networks for efficient power allocation[J]. IEEE Transactions on Wireless Communications, 2021. Link Code
  • Zhang K, Zhao X, Li X, et al. Network Traffic Prediction via Deep Graph-Sequence Spatiotemporal Modeling Based on Mobile Virtual Reality Technology[J]. Wireless Communications and Mobile Computing, 2021, 2021. Link
  • Shao Y, Li R, Hu B, et al. Graph Attention Network-based Multi-agent Reinforcement Learning for Slicing Resource Management in Dense Cellular Network[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10792-10803. Link
  • Dong T, Zhuang Z, Qi Q, et al. Intelligent Joint Network Slicing and Routing via GCN-powered Multi-Task Deep Reinforcement Learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2021. Link
  • Sun F, Wang P, Zhao J, et al. Mobile Data Traffic Prediction by Exploiting Time-Evolving User Mobility Patterns[J]. IEEE Transactions on Mobile Computing, 2021. Link
  • Pan C, Zhu J, Kong Z, et al. DC-STGCN: Dual-Channel Based Graph Convolutional Networks for Network Traffic Forecasting[J]. Electronics, 2021, 10(9): 1014. Link
  • Wu Y, Dai H N, Tang H. Graph neural networks for anomaly detection in industrial internet of things[J]. IEEE Internet of Things Journal, 2021. Link
  • Chen T, Zhang X, You M, et al. A GNN-Based Supervised Learning Framework for Resource Allocation in Wireless IoT Networks[J]. IEEE Internet of Things Journal, 2021, 9(3): 1712-1724. Link
  • Chen G, Wu J, Yang W, et al. Leveraging Graph Convolutional-LSTM for Energy Efficient Caching in Blockchain-based Green IoT[J]. IEEE Transactions on Green Communications and Networking, 2021. Link
  • Tang M, Cai S, Lau V K N. Over-the-Air-Aggregation with Multiple Shared Channels and Graph-based State Estimation for Industrial IoT Systems[J]. IEEE Internet of Things Journal, 2021. Link
  • Hu Z, Liu L, Yu H, et al. Using Graph Representation in Host-Based Intrusion Detection[J]. Security and Communication Networks, 2021, 2021. Link
  • Cheng Q, Wu C, Zhou S. Discovering Attack Scenarios via Intrusion Alert Correlation using Graph Convolutional Networks[J]. IEEE Communications Letters, 2021. Link
  • Soto P, Camelo M, Mets K, et al. ATARI: A Graph Convolutional Neural Network Approach for Performance Prediction in Next-Generation WLANs[J]. Sensors, 2021, 21(13): 4321. Link Data
  • Shen M, Zhang J, Zhu L, et al. Accurate Decentralized Application Identification via Encrypted Traffic Analysis Using Graph Neural Networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2367-2380. Link
  • Li B, Zhu Z. GNN-based Hierarchical Deep Reinforcement Learning for NFV-Oriented Online Resource Orchestration in Elastic Optical DCIs[J]. Journal of Lightwave Technology, 2021. Link
  • Tian X, Li B, Gu R, et al. Reconfiguring multicast sessions in elastic optical networks adaptively with graph-aware deep reinforcement learning[J]. Journal of Optical Communications and Networking, 2021, 13(11): 253-265. Link
  • Cao Y, Jiang H, Deng Y, et al. Detecting and Mitigating DDoS Attacks in SDN Using Spatial-Temporal Graph Convolutional Network[J]. IEEE Transactions on Dependable and Secure Computing, 2021. Link
  • Swaminathan A, Chaba M, Sharma D K, et al. GraphNET: Graph Neural Networks for routing optimization in Software Defined Networks[J]. Computer Communications, 2021, 178: 169-182. Link
  • Park M, Lee Y, Yeom I, et al. Gemma: Reinforcement Learning-Based Graph Embedding and Mapping for Virtual Network Applications[J]. IEEE Access, 2021, 9: 105463-105476. Link
  • Xie Y, Huang L, Kong Y, et al. Virtualized Network Function Forwarding Graph Placing in sdn and nfv-Enabled iot Networks: A Graph Neural Network Assisted Deep Reinforcement Learning Method[J]. IEEE Transactions on Network and Service Management, 2021. Link
  • Zhang P, Wang C, Kumar N, et al. Dynamic Virtual Network Embedding Algorithm based on Graph Convolution Neural Network and Reinforcement Learning[J]. IEEE Internet of Things Journal, 2021. Link
  • Kim H G, Park S, Lange S, et al. Graph neural network‐based virtual network function deployment optimization[J]. International Journal of Network Management, 2021: e2164. Link
  • Tang M, Cai S, Lau V K N. Over-the-air aggregation with multiple shared channels and graph-based state estimation for industrial IoT systems[J]. IEEE Internet of Things Journal, 2021, 8(19): 14638-14657. Link
  • Jiang T, Cheng H V, Yu W. Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 1931-1945. Link Code
  • Lv S, Yi F, He P, et al. QoS Prediction of Web Services Based on a Two-Level Heterogeneous Graph Attention Network[J]. IEEE Access, 2021, 10: 1871-1880. Link
  • Guan L, Zhang M, Gui Y, et al. AI-assisted intent-based traffic grooming in a dynamically shared 5g optical fronthaul network[J]. Optics Express, 2021, 29(15): 23113-23130. Link
  • Xu X, Chen Q, Mu X, et al. Graph-Embedded Multi-Agent Learning for Smart Reconfigurable THz MIMO-NOMA Networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 40(1): 259-275. Link
  • Lee H, Lee S H, Quek T Q S. Learning Autonomy in Management of Wireless Random Networks[J]. IEEE Transactions on Wireless Communications, 2021. Link
  • Leng L, Li J, Shi H, et al. Graph convolutional network-based reinforcement learning for tasks offloading in multi-access edge computing[J]. Multimedia Tools and Applications, 2021, 80(19): 29163-29175. Link
  • Mai T L, Navet N. Deep learning to predict the feasibility of priority-based Ethernet network configurations[J]. ACM Transactions on Cyber-Physical Systems (TCPS), 2021, 5(4): 1-26. Link
  • Chen J, Wu Z. Dynamic computation offloading with energy harvesting devices: a graph-based deep reinforcement learning approach[J]. IEEE Communications Letters, 2021, 25(9): 2968-2972. Link
  • Singh A, Sharma S, Gumaste A, et al. Grafnet: Using Graph Neural Networks to Create Table-Less Routers[J]. IEEE Transactions on Network Science and Engineering, 2021. Link
  • Tekbıyık K, Yurduseven O, Kurt G K. Graph Attention Network-Based Single-Pixel Compressive Direction of Arrival Estimation[J]. IEEE Communications Letters, 2021. Link

Conference

  • Nagaraj K, Starke A, McNair J. Glass: a graph learning approach for software defined network based smart grid ddos security[C]//ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6. Link
  • Li B, Verma G, Rao C, et al. Energy-Efficient Power Allocation in Wireless Networks using Graph Neural Networks[C]//2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021: 732-736. Link
  • Chowdhury A, Verma G, Rao C, et al. Efficient power allocation using graph neural networks and deep algorithm unfolding[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 4725-4729. Link Code
  • Shen Y, Zhang J, Song S H, et al. AI Empowered Resource Management for Future Wireless Networks[C]. Meditcom 2021. Link
  • Tekbıyık K, Kurt G K, Huang C, et al. Channel Estimation for Full-Duplex RIS-assisted HAPS Backhauling with Graph Attention Networks[C]. ICC 2021-2021 IEEE International Conference on Communications. IEEE, 2021. Link
  • Shao Y, Li R, Zhao Z, et al. Graph Attention Network-based DRL for Network Slicing Management in Dense Cellular Networks[C]//2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2021: 1-6. Link
  • Guo J, Yang C. Learning Power Control for Cellular Systems with Heterogeneous Graph Neural Network[C]//2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2021: 1-6. Link
  • Hou K, Xu Q, Zhang X, et al. User Association and Power Allocation Based on Unsupervised Graph Model in Ultra-Dense Network[C]//2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2021: 1-6. Link
  • Rkhami A, Hadjadj-Aoul Y, Outtagarts A. Learn to improve: A novel deep reinforcement learning approach for beyond 5G network slicing[C]//2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2021: 1-6. Link
  • Chen T, You M, Zheng G, et al. Graph Neural Network Based Beamforming in D2D Wireless Networks[C]. The 25th International ITG Workshop on Smart Antennas (WSA), Nov. 2021, EURECOM, French Riviera. Link
  • Zhang X, Zhao H, Xiong J, et al. Scalable Power Control/Beamforming in Heterogeneous Wireless Networks with Graph Neural Networks[C]//GLOBECOM 2021-2021 IEEE Global Communications Conference. IEEE, 2021. Link
  • Zhao Z, Verma G, Rao C, et al. Distributed scheduling using graph neural networks[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 4720-4724. Link Code
  • Sambamoorthy R, Mandalapu J, Peruru S S, et al. Graph Neural Network Based Scheduling: Improved Throughput Under a Generalized Interference Model[C]//EAI International Conference on Performance Evaluation Methodologies and Tools. Springer, Cham, 2021: 144-153. Link
  • Yanyan Z, Zeyu L, Baocong W. Graph convolution network deep reinforcement learning approach based on manifold regularization in cognitive radio network[C]//2021 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2021: 1275-1280. Link
  • Wang H, Ran Y, Zhao L, et al. GRouting: Dynamic Routing for LEO Satellite Networks with Graph-based Deep Reinforcement Learning[C]//2021 4th International Conference on Hot Information-Centric Networking (HotICN). IEEE, 2021: 123-128. Link
  • Liu J, Xiao Y, Li Y, et al. Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph Convolutional Networks[C]. ICC 2021-2021 IEEE International Conference on Communications (ICC). IEEE, 2021. Link
  • Zheng H, Ding X, Wang Y, et al. Attention Based Spatial-Temporal Graph Convolutional Networks for RSU Communication Load Forecasting[C]//International Conference on Collaborative Computing: Networking, Applications and Worksharing. Springer, Cham, 2021: 99-114. Link
  • Yang Y, Wang L. LGANet: Local Graph Attention Network for Peer-to-Peer Botnet Detection[C]//2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication (CTISC). IEEE, 2021: 31-36. Link
  • Huoh T L, Luo Y, Zhang T. Encrypted Network Traffic Classification Using a Geometric Learning Model[C]//2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). IEEE, 2021: 376-383. Link
  • Busch J, Kocheturov A, Tresp V, et al. NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification[C]. 33rd International Conference on Scientific and Statistical Database Management (SSDBM 2021), 2021. Link
  • Pham T D, Ho T L, Truong-Huu T, et al. MAppGraph: Mobile-App Classification on Encrypted Network Traffic using Deep Graph Convolution Neural Networks[C]//Annual Computer Security Applications Conference. 2021: 1025-1038. Link Code and Data
  • Mai T L, Navet N. Improvements to Deep-Learning-based Feasibility Prediction of Switched Ethernet Network Configurations[C]//The 29th International Conference on Real-Time Networks and Systems (RTNS2021). 2021. Link
  • Kong Y, Petrov D, Räisänen V, et al. Path-Link Graph Neural Network for IP Network Performance Prediction[C]//2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). IEEE, 2021: 170-177. Link
  • Qin L, Wei W, Ma Y. FlowDiviner: Spatio-Temporal Network Traffic Prediction Method Based on Graph Neural Network[C]. 5th Asia-Pacific Workshop on Networking (APNet 2021). Link
  • Yao Z, Xu Q, Chen Y, et al. Internet Traffic Forecasting using Temporal-Topological Graph Convolutional Networks[C]//2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021: 1-8. Link
  • Zhang K, Xu X, Fu C, et al. Modeling Data Center Networks with Message Passing Neural Network and Multi-task Learning[C]//International Conference on Neural Computing for Advanced Applications. Springer, Singapore, 2021: 96-112. Link
  • Bao B, Yang H, Wan Y, et al. Node-Oriented Traffic Prediction and Scheduling Based on Graph Convolutional Network in Metro Optical Networks[C]//Optical Fiber Communication Conference. Optical Society of America, 2021: F2G. 2. Link
  • Wang C, Yoshikane N, Tsuritani T. Usage of a Graph Neural Network for Large-Scale Network Performance Evaluation[C]//2021 International Conference on Optical Network Design and Modeling (ONDM). IEEE, 2021: 1-5. Link
  • Khan T A, Abbas K, Rivera J J D, et al. Applying RouteNet and LSTM to Achieve Network Automation: An Intent-based Networking Approach[C]//2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2021: 254-257. Link
  • Siyu Q I, Shuopeng L I, Shaofu L I N, et al. Energy-Efficient VNF Deployment for Graph-Structured SFC Based on Graph Neural Network and Constrained Deep Reinforcement Learning[C]//2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2021: 348-353. Link
  • Wang T, Fan Q, Li X, et al. Drl-sfcp: Adaptive service function chains placement with deep reinforcement learning[C]//ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6. Link Code
  • Yang Z, Gu R, Ji Y. Virtual Network Function Placement Based on Differentiated Weight Graph Convolutional Neural Network and Maximal Weight Matching[C]//2021 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2021: 1-7. Link
  • Yeom S, Choi C, Kolekar S S, et al. Graph Convolutional Network based Link State Prediction[C]//2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2021: 246-249. Link
  • Cui T, Gou G, Xiong G, et al. SIAMHAN: IPv6 Address Correlation Attacks on TLS Encrypted Traffic via Siamese Heterogeneous Graph Attention Network[C]//30th USENIX Security Symposium (USENIX Security 21). 2021: 4329-4346. Link
  • Liu T, Li P, Gu Y. Glint: Decentralized Federated Graph Learning with Traffic Throttling and Flow Scheduling[C]//2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS). IEEE, 2021: 1-10. Link
  • Ranasinghe V, Rajatheva N, Latva-aho M. Graph Neural Network Based Access Point Selection for Cell-Free Massive MIMO Systems[C]. 2021 IEEE Global Communications Conference (GLOBECOM). IEEE, 2021: 01-06. Link
  • Pujol-Perich D, Suárez-Varela J, Xiao S, et al. NetXplain: Real-Time Explainability of Graph Neural Networks Applied to Computer Networks[C]. GNNSys workshop, 2021. Link
  • Zhu H, Gupta V, Ahuja S S, et al. Network planning with deep reinforcement learning[C]//Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 2021: 258-271. Link Code
  • Bernárdez G, Suárez-Varela J, López A, et al. Is Machine Learning Ready for Traffic Engineering Optimization?[C]. IEEE ICNP 2021. Link
  • Li L, Jiang H, He H. Graph-based Multi-view Learning for Cooperative Spectrum Sensing[C]//2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021: 1-7. Link
  • Orhan O, Swamy V N, Tetzlaff T, et al. Connection Management xAPP for O-RAN RIC: A Graph Neural Network and Reinforcement Learning Approach[C]. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2021: 936-941. Link
  • Ren X, Zhang W, Bao L, et al. Deepqsc: A gnn and attention mechanism-based framework for qos-aware service composition[C]//2021 International Conference on Service Science (ICSS). IEEE, 2021: 76-83. Link
  • Le T T, Le Nguyen P, Binh H T T, et al. GCRINT: Network Traffic Imputation Using Graph Convolutional Recurrent Neural Network[C]//ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6. Link Code
  • Poularakis K, Qin Q, Le F, et al. Generalizable and Interpretable Deep Learning for Network Congestion Prediction[C]. IEEE International Conference on Network Protocols (ICNP), 2021. Link
  • Park J, Choi B, Lee C, et al. GRAF: a graph neural network based proactive resource allocation framework for SLO-oriented microservices[C]//Proceedings of the 17th International Conference on emerging Networking EXperiments and Technologies. 2021: 154-167. Link
  • Nikoloska I, Simeone O. Fast power control adaptation via meta-learning for random edge graph neural networks[C]//2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021: 146-150. Link Code (Empty)
  • Mai X, Fu Q, Chen Y. Packet routing with graph attention multi-agent reinforcement learning[C]//2021 IEEE Global Communications Conference (GLOBECOM). IEEE, 2021: 1-6. Link

Preprint

  • Nikoloska I, Simeone O. Black-box and modular meta-learning for power control via random edge graph neural networks[J]. arXiv preprint arXiv:2108.13178, 2021. Link
  • Zhang X, Zhang Z, Yang L. Joint User Association and Power Allocation in Heterogeneous Ultra Dense Network via Semi-Supervised Representation Learning[J]. arXiv preprint arXiv:2103.15367, 2021. Link
  • He S, Yuan J, An Z, et al. Joint User Scheduling and Beamforming Design for Multiuser MISO Downlink Systems[J]. arXiv preprint arXiv:2112.01738, 2021. Link
  • Naderializadeh N. Wireless Link Scheduling via Graph Representation Learning: A Comparative Study of Different Supervision Levels[J]. arXiv preprint arXiv:2110.01722, 2021. Link Code
  • Tekbıyık K, Kurt G K, Ekti A R, et al. Graph Attention Networks for Channel Estimation in RIS-assisted Satellite IoT Communications[J]. arXiv preprint arXiv:2104.00735, 2021. Link
  • Chang L, Branco P. Graph-based Solutions with Residuals for Intrusion Detection: the Modified E-GraphSAGE and E-ResGAT Algorithms[J]. arXiv preprint arXiv:2111.13597, 2021. Link
  • Liu M, Li J, Lu H. Routing in Small Satellite Networks: A GNN-based Learning Approach[J]. arXiv preprint arXiv:2108.08523, 2021. Link
  • Pang B, Fu Y, Ren S, et al. CGNN: Traffic Classification with Graph Neural Network[J]. arXiv preprint arXiv:2110.09726, 2021. Link
  • Shabka Z, Zervas G. Nara: Learning Network-Aware Resource Allocation Algorithms for Cloud Data Centres[J]. arXiv preprint arXiv:2106.02412, 2021. Link
  • Ding S, Zhang F, Luo X, et al. GCN-Geo: A Graph Convolution Network-based Fine-grained IP Geolocation Framework[J]. arXiv preprint arXiv:2112.10767, 2021. Link
  • Lv M, Dong C, Chen T, et al. A Heterogeneous Graph Learning Model for Cyber-Attack Detection[J]. arXiv preprint arXiv:2112.08986, 2021. Link
  • Shen Y, Zhang J, Letaief K B. How Neural Architectures Affect Deep Learning for Communication Networks?[J]. arXiv preprint arXiv:2111.02215, 2021. Link

2020

Journal

  • Yang Y, Zhang S, Gao F, et al. Graph Neural Network-Based Channel Tracking for Massive MIMO Networks[J]. IEEE Communications Letters, 2020, 24(8): 1747-1751. Link
  • Nakashima K, Kamiya S, Ohtsu K, et al. Deep reinforcement learning-based channel allocation for wireless lans with graph convolutional networks[J]. IEEE Access, 2020, 8: 31823-31834. Link
  • Eisen M, Ribeiro A. Optimal wireless resource allocation with random edge graph neural networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 2977-2991. Link
  • Naderializadeh N, Eisen M, Ribeiro A. Wireless power control via counterfactual optimization of graph neural networks[C]//2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2020: 1-5. Link
  • Simsek M, Orhan O, Nassar M, et al. IAB Topology Design: A Graph Embedding and Deep Reinforcement Learning Approach[J]. IEEE Communications Letters, 2020. Link
  • Wang H, Wu Y, Min G, et al. A Graph Neural Network-based Digital Twin for Network Slicing Management[J]. IEEE Transactions on Industrial Informatics, 2020. Link
  • Zhu T, Chen X, Chen L, et al. GCLR: GNN-Based Cross Layer Optimization for Multipath TCP by Routing[J]. IEEE Access, 2020, 8: 17060-17070. Link
  • He K, Chen X, Wu Q, et al. Graph Attention Spatial-Temporal Network with Collaborative Global-Local Learning for Citywide Mobile Traffic Prediction[J]. IEEE Transactions on Mobile Computing, 2020. Link
  • Zhao D, Qin H, Song B, et al. A graph convolutional network-based deep reinforcement learning approach for resource allocation in a cognitive radio network[J]. Sensors, 2020, 20(18): 5216. Link
  • Yan Y, Zhang B, Li C, et al. Cooperative Caching and Fetching in D2D Communications-A Fully Decentralized Multi-Agent Reinforcement Learning Approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16095-16109. Link
  • Lee M, Yu G, Li G Y. Graph embedding based wireless link scheduling with few training samples[J]. IEEE Transactions on Wireless Communications, 2020. Link
  • Liu Y, Lu Y, Li X, et al. On dynamic service function chain reconfiguration in IoT networks[J]. IEEE Internet of Things Journal, 2020, 7(11): 10969-10984. Link
  • Geyer F, Bondorf S. Graph-based Deep Learning for Fast and Tight Network Calculus Analyses[J]. IEEE Transactions on Network Science and Engineering, 2020. Link
  • Zhao J, Qu H, Zhao J, et al. Spatiotemporal graph convolutional recurrent networks for traffic matrix prediction[J]. Transactions on Emerging Telecommunications Technologies, 2020, 31(11): e4056. Link
  • Li J, Sun P, Hu Y. Traffic modeling and optimization in datacenters with graph neural network[J]. Computer Networks, 2020, 181: 107528. Link
  • Rusek K, Suárez-Varela J, Almasan P, et al. RouteNet: Leveraging Graph Neural Networks for network modeling and optimization in SDN[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(10): 2260-2270. Link
  • Sun P, Lan J, Li J, et al. Efficient flow migration for NFV with Graph-aware deep reinforcement learning[J]. Computer Networks, 2020, 183: 107575. Link
  • Yan Z, Ge J, Wu Y, et al. Automatic virtual network embedding: A deep reinforcement learning approach with graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(6): 1040-1057. Link
  • Sun P, Lan J, Li J, et al. Combining Deep Reinforcement Learning With Graph Neural Networks for Optimal VNF Placement[J]. IEEE Communications Letters, 2020. Link
  • Do Xuan C, Dao M H, Nguyen H D. APT attack detection based on flow network analysis techniques using deep learning[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(3): 4785-4801. Link

Conference

  • Eisen M, Ribeiro A. Transferable Policies for Large Scale Wireless Networks with Graph Neural Networks[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 5040-5044. Link
  • Zhao S, Jiang X, Jacobson G, et al. Cellular Network Traffic Prediction Incorporating Handover: A Graph Convolutional Approach[C]//2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 2020: 1-9. Link
  • Rkhami A, Pham T A Q, Hadjadj-Aoul Y, et al. On the Use of Graph Neural Networks for Virtual Network Embedding[C]//2020 International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2020: 1-6. Link
  • Lee M, Yu G, Li G Y. Wireless Link Scheduling for D2D Communications with Graph Embedding Technique[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. Link
  • Fu J, Ma N, Ye M, et al. Wireless D2D Network Link Scheduling based on Graph Embedding[C]//2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). IEEE, 1-5. Link
  • Yang L, Gu X, Shi H. A Noval Satellite Network Traffic Prediction Method Based on GCN-GRU[C]//2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020: 718-723. Link
  • He Z, Wang L, Ye H, et al. Resource Allocation based on Graph Neural Networks in Vehicular Communications[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference. IEEE, 2020: 1-5. Link Code
  • Bahnasy M, Li F, Xiao S, et al. DeepBGP: A Machine Learning Approach for BGP Configuration Synthesis[C]//Proceedings of the Workshop on Network Meets AI & ML. 2020: 48-55. Link
  • Zhou J, Xu Z, Rush A M, et al. Automating Botnet Detection with Graph Neural Networks[C]. AutoML for Networking and Systems Workshop of MLSys 2020 Conference. Link Data
  • Suzuki T, Yasuda Y, Nakamura R, et al. On Estimating Communication Delays using Graph Convolutional Networks with Semi-Supervised Learning[C]//2020 International Conference on Information Networking (ICOIN). IEEE, 2020: 481-486. Link
  • Mo S, Wang Y, Xiao D, et al. Encrypted Traffic Classification Using Graph Convolutional Networks[C]//International Conference on Advanced Data Mining and Applications. Springer, Cham, 2020: 207-219. Link
  • Sun B, Yang W, Yan M, et al. An encrypted traffic classification method combining graph convolutional network and autoencoder[C]//2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC). IEEE, 2020: 1-8. Link
  • Geyer F, Bondorf S. On the robustness of deep learning-predicted contention models for network calculus[C]//2020 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2020: 1-7. Link
  • Xiao S, Mao H, Wu B, et al. Neural Packet Routing[C]//Proceedings of the Workshop on Network Meets AI & ML. 2020: 28-34. Link
  • Yang C, Zhou Z, Wen H, et al. MSTNN: A graph learning based method for the origin-destination traffic prediction[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. Link
  • Vinchoff C, Chung N, Gordon T, et al. Traffic Prediction in Optical Networks Using Graph Convolutional Generative Adversarial Networks[C]//2020 22nd International Conference on Transparent Optical Networks (ICTON). IEEE, 2020: 1-4. Link
  • Gui Y, Wang D, Guan L, et al. Optical Network Traffic Prediction Based on Graph Convolutional Neural Networks[C]//2020 Opto-Electronics and Communications Conference (OECC). IEEE, 2020: 1-3. Link
  • Sawada K, Kotani D, Okabe Y. Network Routing Optimization Based on Machine Learning Using Graph Networks Robust against Topology Change[C]//2020 International Conference on Information Networking (ICOIN). IEEE, 2020: 608-615. Link
  • Heo D N, Lange S, Kim H G, et al. Graph Neural Network based Service Function Chaining for Automatic Network Control[C]//2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2020: 7-12. Link
  • Rafiq A, Khan T A, Afaq M, et al. Service Function Chaining and Traffic Steering in SDN using Graph Neural Network[C]//2020 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2020: 500-505. Link
  • Sun P, Lan J, Guo Z, et al. DeepMigration: Flow Migration for NFV with Graph-based Deep Reinforcement Learning[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. Link
  • Habibi F, Dolati M, Khonsari A, et al. Accelerating Virtual Network Embedding with Graph Neural Networks[C]//2020 16th International Conference on Network and Service Management (CNSM). IEEE, 2020: 1-9. Link
  • Kim H G, Park S, Heo D, et al. Graph Neural Network-based Virtual Network Function Deployment Prediction[C]//2020 16th International Conference on Network and Service Management (CNSM). IEEE, 2020: 1-7. Link
  • Kim H G, Park S, Lange S, et al. Graph neural network-based virtual network function management[C]//2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2020: 13-18. Link
  • Scotti A, Moghadam N N, Liu D, et al. Graph Neural Networks for Massive MIMO Detection[C]. ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+), 2020. Link
  • Mallick T, Kiran M, Mohammed B, et al. Dynamic graph neural network for traffic forecasting in wide area networks[C]//2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020: 1-10. Link
  • Gao Z, Eisen M, Ribeiro A. Resource allocation via graph neural networks in free space optical fronthaul networks[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference. IEEE, 2020: 1-6. Link

Preprint

  • Ferriol-Galmés M, Suárez-Varela J, Barlet-Ros P, et al. Applying Graph-based Deep Learning To Realistic Network Scenarios[J]. arXiv preprint arXiv:2010.06686, 2020. Link
  • Dong J, Chen S, Ha P Y J, et al. A DRL-based Multiagent Cooperative Control Framework for CAV Networks: a Graphic Convolution Q Network[J]. arXiv preprint arXiv:2010.05437, 2020. Link

2019

Journal

  • Fang L, Cheng X, Wang H, et al. Idle time window prediction in cellular networks with deep spatiotemporal modeling[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1441-1454. Link
  • Geyer F. DeepComNet: Performance evaluation of network topologies using graph-based deep learning[J]. Performance Evaluation, 2019, 130: 1-16. Link
  • Zhuang Z, Wang J, Qi Q, et al. Toward greater intelligence in route planning: A graph-aware deep learning approach[J]. IEEE Systems Journal, 2019, 14(2): 1658-1669. Link

Conference

  • Eisen M, Ribeiro A. Large scale wireless power allocation with graph neural networks[C]//2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2019: 1-5. Link
  • Shen Y, Shi Y, Zhang J, et al. A graph neural network approach for scalable wireless power control[C]//2019 IEEE Globecom Workshops (GC Wkshps). IEEE, 2019: 1-6. Link Code
  • He K, Huang Y, Chen X, et al. Graph attention spatial-temporal network for deep learning based mobile traffic prediction[C]//2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2019: 1-6. Link
  • Geyer F, Schmid S. DeepMPLS: fast analysis of MPLS configurations using deep learning[C]//2019 IFIP Networking Conference (IFIP Networking). IEEE, 2019: 1-9. Link
  • Geyer F, Bondorf S. DeepTMA: Predicting effective contention models for network calculus using graph neural networks[C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2019: 1009-1017. Link
  • Suárez-Varela J, Carol-Bosch S, Rusek K, et al. Challenging the generalization capabilities of Graph Neural Networks for network modeling[C]//Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos. 2019: 114-115. Link
  • Badia-Sampera A, Suárez-Varela J, Almasan P, et al. Towards more realistic network models based on Graph Neural Networks[C]//Proceedings of the 15th International Conference on emerging Networking EXperiments and Technologies. 2019: 14-16. Link
  • Rusek K, Suárez-Varela J, Mestres A, et al. Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN[C]//Proceedings of the 2019 ACM Symposium on SDN Research. 2019: 140-151. Link
  • Jalodia N, Henna S, Davy A. Deep Reinforcement Learning for Topology-Aware VNF Resource Prediction in NFV Environments[C]//2019 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2019: 1-5. Link

2018

Journal

  • Rusek K, Chołda P. Message-passing neural networks learn little’s law[J]. IEEE Communications Letters, 2018, 23(2): 274-277. Link

2017

Journal

  • Mijumbi R, Hasija S, Davy S, et al. Topology-aware prediction of virtual network function resource requirements[J]. IEEE Transactions on Network and Service Management, 2017, 14(1): 106-120. Link

2016

Conference

  • Mijumbi R, Hasija S, Davy S, et al. A connectionist approach to dynamic resource management for virtualised network functions[C]//2016 12th International Conference on Network and Service Management (CNSM). IEEE, 2016: 1-9. Link