The live demo video is available at the demo.mp4
- If you don't want to train CNN model from scratch, you can download the MobileNetV2 pre-trained model is at: TensorFlow MobileNetV2; You will need to train the RNN model with the commands in Training step.
- If you don't want to train the whole model, you can download the pre-trained model at: Pre-Trained Models, and put it into android project fold, and build the apk.
- If you even don't want to build the apk, you can download the pre-built apk at: Pre-Built Apk
python main.py --mode train --caption_path ./Dataset/captions_train2014.json --feature_path ./Dataset/features.npy --data_is_coco
python main.py --mode test --inception_path ConvNets/mobilenet_v2.pb --image_path Images/library.jpg
If the model have been trained, a convenient shell file is available at generate.sh
python main.py --mode test --image_path ./Images/street.jpg --inception_path ./ConvNets/mobilenet_v2.pb --saveencoder --savedecoder
cd utils
python save_graph.py --mode encoder --model_folder ../model/Encoder/
python save_graph.py --mode decoder --model_folder ../model/Decoder/
# generate .pb
# for now, pb is enough for inference
python merge_graphs.py --encpb ../model/Trained_Graphs/encoder_frozen_model.pb --decpb ../model/Trained_Graphs/decoder_frozen_model.pb
cd model/Trained_Graphs/
# generate .tflite
# there are some ops not support in the latest tflite library
tflite_convert \
--output_file=./merged_frozen_graph.tflite \
--graph_def_file=./merged_frozen_graph.pb \
--input_arrays=encoder/import/input \
--input_shapes=1,224,224,3 \
--output_arrays=decoder/LSTM/word_0,decoder/LSTM/word_1,decoder/LSTM/word_2,decoder/LSTM/word_3,decoder/LSTM/word_4,decoder/LSTM/word_5,decoder/LSTM/word_6,decoder/LSTM/word_7,decoder/LSTM/word_8,decoder/LSTM/word_9,decoder/LSTM/word_10,decoder/LSTM/word_11,decoder/LSTM/word_12,decoder/LSTM/word_13,decoder/LSTM/word_14,decoder/LSTM/word_15,decoder/LSTM/word_16,decoder/LSTM/word_17,decoder/LSTM/word_18,decoder/LSTM/word_19,decoder/LSTM/word_20,decoder/LSTM/word_21