Created: Sep 4, 2020 4:31 PM
不断完善中,欢迎补充Slide地址~
初衷是对不久前的KBQA调研做一个总结,未来可能会整理成一个多个KG方向资源的仓库
- Semantic parsing via staged query graph generation: Question answering with knowledge base(ACL2015 MS Wen-tau Yih) SP方法开山之作
- Formal Query Building with Query Structure Prediction for Complex Question Answering over Knowledge Base(AAAI2020 东南大学陈永锐)
- SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases(AAAI 2020 南京大学)
- Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering (EMNLP 2019 南京大学)
- Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases(ACL2020 SMU 蓝韵诗)
- Knowledge base question answering via encoding of complex query graphs(EMNLP2018 上交)
- A state-transition framework to answer complex questions over knowledge base(EMNLP2018 北大胡森)
- Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases(ACL2020)
- Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text(EMNLP 2018 Googel Sun haitian)
- PullNet: Open domain question answering with iterative retrieval on knowledge bases and text(EMNLP 2019 Googel Sun haitian)
- Improving Multi-hop Knowledge Base Question Answering by Learning Intermediate Supervision Signals(WSDM2021 SMU 蓝韵诗)
- Case-based Reasoning for Natural Language Queries over Knowledge Bases (Google 2021)
- TransferNet: An Effective and Transparent Framework for Multi-hop Question Answering over Relation Graph(2021 清华史佳欣)
- KBQA: Learning question answering over QA corpora and knowledge bases(PVLDB2018 复旦崔万云)
- Question answering over knowledge graphs: Question understanding via template decomposition(PVLDB2018 复旦郑卫国)
- Leveraging frequent query substructures to generate formal queries for complex question answering(EMNLP2019 南京大学)
- Automated template generation for question answering over knowledge graphs(WWW2017 马普所)
- KQA Pro: A Large-Scale Dataset with Interpretable Programs and Accurate SPARQLs for Complex Question Answering over Knowledge Base(ACL2022)
- SKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models
- Unseen Entity Handling in Complex Question Answering over Knowledge Base via Language Generation(EMNLP2021)
- RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering(ACL2022)
- Constraint-based question answering with knowledge graph(COLING2016)
- Sequence-based structured prediction for semantic parsing(ACL2016)
- Language to logical form with neural attention(ACL2016)
- Neural symbolic machines: Learning semantic parsers on freebase with weak supervision(ACL2017)
- Learning a neural semantic parser from user feedback(ACL2017)
- Coarse-to-fine decoding for neural semantic parsing(ACL2018)
- A syntactic neural model for general-purpose code generation(ACL2017)
- Sequence-to-action: End-to-end semantic graph generation for semantic parsing(ACL2018)
- Language to logical form with neural attention(ACL2016)
- The web as a knowledge-base for answering complex questions(NAACL2018)CWQ数据集 基于搜索引擎+RC回答子问题 GitHub
- EDG-based Question Decomposition for ComplexQuestion Answering over Knowledge Bases(ISWC2021 南京大学)
- Complex question decomposition for semantic parsing(ACL 2020 国防科大)
- SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases(AAAI 2020 南京大学)
- BREAK it down: A question understanding benchmark(TACL 2019 AI2)
- Text modular networks: learning to decompose tasks in the language of existing models(NAACL 2021 AI2)
- KQA Pro: A Large-Scale Dataset with Interpretable Programs and Accurate SPARQLs for Complex Question Answering over Knowledge Base(WWW2021 清华史佳欣)
- Multi-hop reading comprehension through question decomposition and rescoring(ACL 2019 RC的分解)
- Unsupervised question decomposition for question answering (EMNLP 2020 FBAI)
- Enhancing key-value memory neural networks for knowledge based question answering(NAACL2019)
- Did aristotle use a laptop? A question answering benchmark with implicit reasoning strategies(TACL2020) QDMR的结构
- MuSiQue: Multi-hop Questions via Single-hop Question Composition(TACL 2022) QDMR的结构
- Break, Perturb, Build : Automatic Perturbation of Reasoning Paths Through Question Decomposition(TACL2022) QDMR的结构
- SPARQLing Database Queries from Intermediate Question Decompositions(EMNLP2021) QDMR的结构 text2sql
- Weakly Supervised Mapping of Natural Language to SQL through Question Decomposition QDMR的结构 text2sql
- Survey on challenges of Question Answering in the Semantic Web(Semantic Web2017)
- A Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions (IJCAI 2021 SMU 蓝韵诗)
- Complex Knowledge Base Question Answering:A Survey(蓝韵诗 2021)
- Core Techniques of Question Answering Systems over Knowledge Bases : a Survey(2017)
- A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges(2020 阿里巴巴),中文翻译:https://zhuanlan.zhihu.com/p/134090164
- Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs(2019)
- Question Answering over Curated and Open Web Sources (SIGIR2020 Tutorial) Slide
- Old is Gold: Linguistic Driven Approach for Entity and Relation Linking of Short Text(NAACL 2019)(Falcon系统 GitHub)
- EARL: Joint entity and relation linking for question answering over knowledge graphs (ISWC 2018)
- Leveraging semantic parsing for relation linking over knowledge bases (ISWC2020 IBM Watson) (SOTA)
- Generative Relation Linking for Question Answering over Knowledge Bases(ISWC2021 IBM Watson)
- FALCON 2.0: An Entity and Relation Linking Tool over Wikidata (ISWC 2019)(Falcon2.0 GitHub)(开源系统SOTA)
- Scalable knowledge graph construction over text using deep learning based predicate mapping (WWW2019)
- Learning Representation Mapping for Relation Detection in Knowledge Base Question Answering(ACL2019 南京大学)
- PATTY: A taxonomy of relational patterns with semantic types (EMNLP 2012 马普所)
- Towards Combinational Relation Linking over Knowledge Graphs (复旦)
- LEVERAGING SEMANTIC PARSING FOR RELATION LINKING OVER KNOWLEDGE BASES(ISWC2021)
- LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking(ACL21)
- EntQA: Entity Linking as Question Answering(ICLR2022)
- A Semantics-aware Transformer Model of Relation Linking for Knowledge Base Question Answering(ACL21 IBM, QALD9,LC1,2,simplequestion)
- LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking (ACL2021 IBM Watson)
- Autoregressive entity retrieval(ICLR 2021 FBAI)
- Efficient One-Pass End-to-End Entity Linking for Questions(EMNLP 2020 FBAI)
- Scalable Zero-shot Entity Linking with Dense Entity Retrieval(EMNLP 2020 FBAI)
- PNEL: Pointer Network based End-To-End Entity Linking over Knowledge Graphs (ISWC 2020)
- KBPearl: A knowledge base population system supported by joint entity and relation linking(PVLDB 2020)
-
ComplexQuestion: Constraint-based question answering with knowledge graph(COLING2016) 微软亚研院周明组提出
论文:Constraint-Based Question Answering with Knowledge Graph
数据集:https://github.com/JunweiBao/MulCQA/tree/ComplexQuestions
简介:2100条(1300/800)
-
ComplexWebQuestion:
The web as a knowledge-base for answering complex questions(NAACL2018)
子问题的回答基于搜索引擎上的RC
-
论文:Semantic Parsing on Freebase from Question-Answer Pairs(EMNLP2013斯坦福)
简介:5810条(3778/2032) 斯坦福大学,根据Google Suggest API构建
-
WebQuestionSP:
Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base(ACL 2015)
微软yih-wen tau
-
SimpleQuestion
论文:Large-scale Simple Question Answering with Memory Networks(2015)
数据集:https://research.fb.com/downloads/babi/
简介:108442条(75910/10845/21687)Freebase 全是一个三元组就可以回答的问题
-
简介:917条 Freebase
-
QALD series: 资源地址:https://github.com/ag-sc/QALD
论文
QALD-7: https://svn.aksw.org/papers/2017/ESWC_2017_QALD/public.pdf
QALD-8: http://ceur-ws.org/Vol-2241/paper-05.pdf
QALD-9: http://ceur-ws.org/Vol-2241/paper-06.pdf
评测地址
QALD-7: http://gerbil-qa.aksw.org/gerbil/experiment?id=201706300001
QALD-8: http://gerbil-qa.aksw.org/gerbil/experiment?id=201710220000
QALD-9: http://gerbil-qa.aksw.org/gerbil/experiment?id=201810080002
-
LC-QuAD 2.0: http://lc-quad.sda.tech/
Question Answering over Knowledge Graphs with Neural Machine Translation and Entity Linking
-
KQA Pro
wikidata,120K有SPARQL标注,KB子集
-
CRONKGQA
Question Answering over Temporal Knowledge Graphs(ACL2021)
时间问答数据集,wikidata,410K,KB子集
-
CoQA
-
GraphQuestion
论文:On Generating Characteristic-rich Question Sets for QA Evaluation(2016)
数据集:https://github.com/ysu1989/GraphQuestions
简介:Freebase
-
30M Factoid Question
论文:Generating Factoid QuestionsWith Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus
数据集:https://academictorrents.com/details/973fb709bdb9db6066213bbc5529482a190098ce
简介:30M条问答对
-
MetaQA 数据集:https://drive.google.com/drive/folders/0B-36Uca2AvwhTWVFSUZqRXVtbUE
-
CSQA
-
ReClor 论文: ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning(ICLR2020) 项目地址:http://whyu.me/reclor/
-
CLEVRER 论文: CLEVRER: CoLlision Events for Video REpresentation and Reasoning(ICLR2020) 项目地址: http://clevrer.csail.mit.edu/
-
CommonsenseQA 论文: Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning 特拉维夫大学常识问答任务,SOTA(0.9179) 项目地址: https://www.tau-nlp.org/commonsenseqa
-
Hotpot QA
-
TriviaQA 阅读理解数据集 论文:TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension
-
Mutual 对话数据集 西湖大学张岳组 论文地址:MuTual: A Dataset for Multi-Turn Dialogue Reasoning github地址:https://github.com/Nealcly/MuTu
- SEMPRE: Semantic Parsing with Execution 斯坦福
项目地址 tutorial GitHub
- **简介:**NL转换成逻辑形式,支持lambda calculus,lambda DCS等
- Stanza: A Python NLP Library for Many Human Languages斯坦福官方NLP工具包 ACL2020 demo
学习讲习班大佬们的总结,可以迅速了解一个领域
可参考刘知远老师给出的清单 如何不出国门走进NLP学术前沿(刘知远)
主要有:**中文信息学会(CIPS)**计算机学会(CCF) **人工智能学会(CAAI)等
- KEQA 2019(南京大学)
- Natural Language Question Answering over Knowledge Graph 邹磊 (北京大学)
- Matching Questions and Answers in Dialogues from Online Forums 朱其立 (上海交通大学)
- 知识图谱中的关联搜索 程龚 (南京大学)
- Understanding User Generated Information 钱铁云 (武汉大学)
- 事理图谱的构建及应用 丁效 (哈尔滨工业大学)
- 搜索引擎中的智能问答 张奇 (复旦大学)
- CCF 学科前沿讲习班第 108 期
- 大规模图神经网络与实践 杨红霞 (阿里巴巴)
- 知识计算即服务:赋能企业知识化转型 袁晶(华为云)
- 知识图谱融合方法 胡伟(南京大学)
- 生活领域知识图谱的构建及应用 张富峥(美团点评)
- 知识图谱与众包数据库 李国良(清华大学)
- 大规模知识图谱和自动化构建关键技术及应用 肖仰华(复旦大学)
- CIPS 前沿讲习班 2019
- 面向自然语言处理的深度学习基础 邱锡鹏(复旦大学)颜航(复旦大学)
- 开放域语义解析 韩先培(**科学院软件研究所)陈波(**科学院软件研究所)
- 图神经网络在自然语言处理中的应用 张岳(西湖大学)
- 基于深度学习的机器阅读理解 崔一鸣(科大讯飞)
- 问答系统 唐都钰(微软亚洲研究院)段楠(微软亚洲研究院)
- 任务型对话系统 车万翔(哈尔滨工业大学)车万翔(哈尔滨工业大学)
- 人工智能在人机对话系统中的技术现状与挑战 严睿(北京大学)
- CIPS 前沿讲习班 2018
- 语义表示学习 刘知远(清华大学)
- 深度学习与词法句法语义分析 车万翔(哈尔滨工业大学)
- 深度学习与机器翻译 张家俊(**科学院自动化研究所)涂兆鹏(腾讯AI Lab)
- 深度强化学习与GAN基础 俞扬(南京大学)
- 信息检索中的深度强化学习新进展 徐君(**科学院计算技术研究所)庞亮(**科学院计算技术研究所)
- 对话系统中的深度学习进展 李纪为(香侬科技)
- 知识图谱中的深度学习新进展 William Wang (University California, Santa Barbara)
- CIPS 前沿讲习班 2017
- 深度学习基础知识 邱锡鹏,复旦大学
- 深度学习工具实战 龚经经,复旦大学
- 深度学习与词法句法语义分析 车万翔,哈尔滨工业大学
- 深度学习与知识获取 刘康,中科院自动化所
- 深度学习与机器翻译 熊德意,苏州大学
- 深度学习与自动问答 冯岩松,北京大学
- 深度学习与社会计算 赵鑫,**人民大学
- 深度学习与信息检索 郭嘉丰,中科院计算所