This repo includes codes and examples for paper [📖 ArXiv]DEEM: Dynamic Experienced Expert Modeling for Stance Detection.
In this paper, different from existing multi-agent works that require detailed descriptions and use fixed experts, we propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experienced experts and let LLMs reason in a semi-parametric way, making the experts more generalizable and reliable. Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks, outperforms methods with self-consistency reasoning, and reduces the bias of LLMs.
The model structures are shown in the following figure.
Method | Including Explanations | Multi-Roles | Verified Experts | Reasoning Type |
---|---|---|---|---|
Few-Shot | ❌ | ❌ | - | Gen |
CoT | ✅ | ❌ | - | Gen |
Auto-CoT | ✅ | ❌ | - | Re+Gen |
ExpertPrompt | ✅ | ❌ | ❌ | Gen |
SPP | ✅ | ✅ | ❌ | Gen |
DEEM(ours) | ✅ | ✅ | ✅ | Re+Gen |
📑 If you find our project helpful to your research, please consider citing:
@misc{wang2024deem,
title={DEEM: Dynamic Experienced Expert Modeling for Stance Detection},
author={Xiaolong Wang and Yile Wang and Sijie Cheng and Peng Li and Yang Liu},
year={2024},
eprint={2402.15264},
archivePrefix={arXiv},
primaryClass={cs.CL}
}