01. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction (KAIST-net)
- AAPM-Mayo Clinic Low-Dose CT Grand Challenge (only abdominal CT images)
- 512x512, 10 patients, 5743 slices
- use a 55x55 patches
- TCIA(The Cancer Imaging Archive) normal-dose CT images.
- 256x256, 165 patients, 7015 slices.
- impose Poisson noise into normal-dose sinogram.
- use a 33x33 patches.
- Network use only 3 conoluional layers (Conv - ReLU - Conv - ReLU - Conv).
- AAPM-Mayo Clinic Low-Dose CT Grand Challenge
- 512x512, 10 patients, 5080 slices
- use a 44x44 patches(2D), 44x44x24 patches(3D)
- cadaver CT image dataset collected at Massachusetts General Hospital (MGH)
- NBIA(Natioanl Biomedical Imaging Archive) normal-dose CT images
- 256x256, 165 patients, 7015 slices
- adding Poisson noise into the sinogram simulated from the normal-dose images
- AAPM-Mayo Clinic Low-Dose CT Grand Challenge
- 512x512, 10 patients, 2378 slices
- use a 55x55 patches
- Phantom CT scans
- An anthropomorphic thorax phantom (QRM anthropomorphic thorax phantom)
- voltage of 120 kVp. 50mAs(routine-dose), 10mAs(low-dose)
- Cardiac CT scan (28 patients)
- voltage of 120 kVp. 50
60mAs(routine-dose), 1012mAs(low-dose)
- AAPM-Mayo Clinic Low-Dose CT Grand Challenge
- 512x512, 10 patients, 2378 slices
- use a 80x80x11 patches
08. Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
- AAPM-Mayo Clinic Low-Dose CT Grand Challenge
- 512x512, 10 patients, 4000 slices
- use a 64x64 patches
- NBIA(Natioanl Biomedical Imaging Archive) normal-dose CT images
- 512x512, 239 slices
- adding Poisson + normally Gaussian noise
- use a 256x256 patches (sampled from the 4 corners and center)
- Deceased piglet CT
- voltage of 100 kVp. 300mAs(full-dose) ~ 15mAs(low-dose)
- Phantom CT scans
- voltage of 120 kVp. 300mAs(full-dose) ~ 15mAs(low-dose)
- Data Science Bowl 2017
- Detect lung cancer from LDCTs
10. 3D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning from a 2D Trained Network
- AAPM-Mayo Clinic Low-Dose CT Grand Challenge
- 512x512, 10 patients
- use a 64x64 patches
- 50 CT scans of mitral valve prolapse patients, and 50 CT scans of coronary artery disease patients
- use a 56x56 patches
- AAPM-Mayo Clinic Low-Dose CT Grand Challenge
- In coronary CTA, the images at the low-dose and routine-dose phases do not match each other exactly due to the cardiac motion
- Two generator denotes the mapping form low-dose to routine-dose image and from routine-dose to low-dose image, two adversarial discriminators distinguish between input images and synthesized images from the generators
- Using cycle-consistent adversarial denoising network, learn the mapping between the low and routine dose cardiac phases