/bitstream_mode3_videoparser

Open source video parser for the ITU-T P.1204.3 model.

Primary LanguageCGNU Lesser General Public License v2.1LGPL-2.1

Bitstream Mode3 Videoparser

The following repository consists of a video parser that can extract video statistics without decoding pixel information from a given video file. Here, statistics refer to higher mode statistics, considering e.g. motion, block sizes, QP values, ...

For a direct application of this videoparser, please check out the ITU-T P.1204.3 Reference Implementation.

If you use this videoparser in any of your research work, please cite the following paper:

@inproceedings{rao2020p1204,
  author={Rakesh Rao {Ramachandra Rao} and Steve G\"oring and Werner Robitza and Alexander Raake and Bernhard Feiten and Peter List and Ulf Wüstenhagen},
  title={Bitstream-based Model Standard for 4K/UHD: ITU-T P.1204.3 -- Model Details, Evaluation, Analysis and Open Source Implementation},
  BOOKTITLE={2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX)},
  address="Athlone, Ireland",
  days=26,
  month=May,
  year=2020,
}

Contents:

Requirements (Native Linux)

You can also use Docker, see the Docker guide.

To build the videoparser on a Linux system (e.g. Ubuntu 18.04/20.04) you need the following main requirements:

  • Python 3
  • scons build system
  • gcc

All requirements can be installed with the following commands:

sudo apt-get update -qq
sudo apt-get -y -qq install python3 python3-numpy python3-pip git scons autoconf automake build-essential libass-dev libfreetype6-dev libsdl2-dev libtheora-dev libtool libva-dev libvdpau-dev libvorbis-dev libxcb1-dev libxcb-shm0-dev libxcb-xfixes0-dev pkg-config texinfo wget zlib1g-dev yasm
pip3 install --user --upgrade pip
pip3 install --user pandas

For Ubuntu 22.04, you may need to apply a patch to FFmpeg:

cd ffmpeg && patch -p1 < ../mathops.patch

If you want to run the parser under Windows, please check out the Development guide.

Building

To finally build the parser, either run:

./build.sh

Or, manually run:

# Configure, Build and Install ffmpeg
cd ffmpeg && ./configure_ffmpeg.sh && make -j $(nproc) && make install

# Build videoparser Application and libvideoparser
cd ../VideoParser && scons

Usage

To run the parser, call:

./parser.sh <video>

For help, see ./parser.sh --help:

usage: parse.py [-h] [--dll DLL] [--output OUTPUT] input

Bitstream Mode 3 Video Parser

positional arguments:
  input            input video

optional arguments:
  -h, --help       show this help message and exit
  --dll DLL        Path to DLL (default: ../VideoParser/libvideoparser.so)
  --output OUTPUT  Path to output JSON stats file, a file extension of
                   .json.bz2 will compress it; if None report filename will be
                   automatically estimated based on video name (default: None)

2017--2020

Troubleshooting

If something is not working, please run:

./testmain.sh <video>

It will open a GDB run of the main video parser library. Type run and check if something breaks.

Docker

If you want to use the videoparser in a Docker container, you just need Docker installed on your system. Go to the Docker website to install it.

Pre-built Docker image

We provide a pre-built Docker image on GitHub Container Registry. You can use it without building it yourself.

To pull the image, you need to have a valid GitHub token with access to the repository. If you don't have a token, create one here, and make sure it has read:packages scope enabled.

docker login ghcr.io

You will be prompted to enter your GitHub username, and as password, enter your personal access token. Once you have a token, you can pull the image, and rename it to videoparser for easier use.

docker pull --platform linux/amd64 ghcr.io/telecommunication-telemedia-assessment/bitstream_mode3_videoparser:master
docker image tag ghcr.io/telecommunication-telemedia-assessment/bitstream_mode3_videoparser:master videoparser

Building the Docker image yourself

⚠️ The Docker container is tested to work on Linux AMD64. If you are using a different architecture, you might run into errors. Specifically, we have observed issues building the container under Apple Silicon Macs.

To build the image yourself, clone this repository and run:

docker build -t videoparser .

Running the Docker image

Then, to run the parser, assuming you have a video file input.mp4 in your current directory, run:

docker run -it --rm -v $(pwd):/tmp videoparser /tmp/input.mp4 --output /tmp/output.json.bz2

This will create a output.json.bz2 file in the current directory too.

Note that /tmp is the working directory inside the container, not on your host.

Development

To further add new codecs or measures, please see development.md.

Authors

Main developers:

  • Peter List - Deutsche Telekom AG
  • Anton Schubert - Technische Universität Ilmenau
  • Steve Göring - Technische Universität Ilmenau
  • Rakesh Rao Ramachandra Rao - Technische Universität Ilmenau
  • Werner Robitza - Technische Universität Ilmenau

Contributors:

  • Alexander Raake - Technische Universität Ilmenau
  • Bernhard Feiten - Deutsche Telekom AG
  • Ulf Wüstenhagen - Deutsche Telekom AG

License

This video parser is based on several marked changes in FFmpeg and additional developed software. The FFmpeg software is licensed under the GNU Lesser General Public License version 2.1 (LGPL v2.1+), see ffmpeg/COPYING.LGPLv2.1. In addition, all non-FFmpeg related sotware parts are also licensed under LGPL v2.1+, see LICENSE.md.