This package provides nested cross-validation similar to scikit-learn's GridSearchCV but uses the Message Passing Interface (MPI) for parallel computing.
- scikit-learn 0.16.0 or later
- mpi4py
- pandas
from mpi4py import MPI
import numpy
from sklearn.datasets import load_boston
from sklearn.svm import SVR
from grid_search import NestedGridSearchCV
data = load_boston()
X = data['data']
y = data['target']
estimator = SVR(max_iter=1000, tol=1e-5)
param_grid = {'C': 2. ** numpy.arange(-5, 15, 2),
'gamma': 2. ** numpy.arange(3, -15, -2),
'kernel': ['poly', 'rbf']}
nested_cv = NestedGridSearchCV(estimator, param_grid, 'mean_absolute_error',
cv=5, inner_cv=3)
nested_cv.fit(X, y)
if MPI.COMM_WORLD.Get_rank() == 0:
for i, scores in enumerate(nested_cv.grid_scores_):
scores.to_csv('grid-scores-%d.csv' % (i + 1), index=False)
print(nested_cv.best_params_)
The result should look like this:
score (Validation) | C | gamma | kernel | score (Test) | |
---|---|---|---|---|---|
fold | |||||
1 | -7.252490 | 0.5 | 0.000122 | rbf | -4.178257 |
2 | -5.662221 | 128.0 | 0.000122 | rbf | -5.445915 |
3 | -5.582780 | 32.0 | 0.000122 | rbf | -7.066123 |
4 | -6.306561 | 0.5 | 0.000122 | rbf | -6.059503 |
5 | -6.174779 | 128.0 | 0.000122 | rbf | -6.606218 |