FAIL: pygpu.tests.test_elemwise.test_divmod('int8', 'float32', (50,))
Opened this issue · 4 comments
helq commented
After installing libgpuarray and runnig the tests I got this error:
$ DEVICE=cuda python2 -c "import pygpu.tests.test_elemwise; pygpu.tests.test_elemwise.divmod_array('int8', 'float32', (50,))"
*** Testing for GeForce GTX TITAN X
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/elacruzca/.local/lib/python2.7/site-packages/pygpu-0.6.5-py2.7-linux-x86_64.egg/pygpu/tests/support.py", line 39, in f
func(*args, **kwargs)
File "/home/elacruzca/.local/lib/python2.7/site-packages/pygpu-0.6.5-py2.7-linux-x86_64.egg/pygpu/tests/test_elemwise.py", line 236, in divmod_array
assert numpy.allclose(out_c[1], numpy.asarray(out_g[1]))
AssertionError
No other test fails.
pygpu version 0.6.5
nouiz commented
Can you print the values?
Le ven. 12 mai 2017 19:28, helq <notifications@github.com> a écrit :
… After installing libgpuarray and runnig the tests I got this error:
$ DEVICE=cuda python2 -c "import pygpu.tests.test_elemwise; pygpu.tests.test_elemwise.divmod_array('int8', 'float32', (50,))"
*** Testing for GeForce GTX TITAN X
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/elacruzca/.local/lib/python2.7/site-packages/pygpu-0.6.5-py2.7-linux-x86_64.egg/pygpu/tests/support.py", line 39, in f
func(*args, **kwargs)
File "/home/elacruzca/.local/lib/python2.7/site-packages/pygpu-0.6.5-py2.7-linux-x86_64.egg/pygpu/tests/test_elemwise.py", line 236, in divmod_array
assert numpy.allclose(out_c[1], numpy.asarray(out_g[1]))
AssertionError
No other test fails.
—
You are receiving this because you are subscribed to this thread.
Reply to this email directly, view it on GitHub
<#433>, or mute the thread
<https://github.com/notifications/unsubscribe-auth/AALC-34dwGK0g3ITPEea27Hc_6n3PIiLks5r5OsngaJpZM4NZ4S4>
.
helq commented
These are the values:
print out_c[1]
[ 2. 2.96456456 1.80960321 1. 2. 5. 1.
0.37324905 4. 2. 2. 4. 5. 6.
0. 1.09210575 2.92230988 4. 2. 1.31337512
1. 2. 0.31895924 2. 4. 1.
2.18828678 0. 0.35755444 0. 0.76005101 5.
0.48180008 5. 2.69929767 6. 5. 0. 8.
2. 5. 3. 0. 7. 9.
1.02005863 2. 1. 1.64588308 0.27146184]
print numpy.asarray(out_g[1])
[ 2. 2.96456456 1.80960321 1. 2. 5. 1.
0.37324905 4. 2. 2. 4. 5. 6.
nan 1.09210575 2.92230988 4. 2. 1.31337512
1. 2. 0.31895924 2. 4. 1.
2.18828678 nan 0.35755444 nan 0.76005101 5.
0.48180008 5. 2.69929767 6. 5. nan
8. 2. 5. 3. nan 7. 9.
1.02005863 2. 1. 1.64588308 0.27146184]
print out_g[1]
[ 2. 2.96456456 1.80960321 1. 2. 5. 1.
0.37324905 4. 2. 2. 4. 5. 6.
nan 1.09210575 2.92230988 4. 2. 1.31337512
1. 2. 0.31895924 2. 4. 1.
2.18828678 nan 0.35755444 nan 0.76005101 5.
0.48180008 5. 2.69929767 6. 5. nan
8. 2. 5. 3. nan 7. 9.
1.02005863 2. 1. 1.64588308 0.27146184]
abergeron commented
It's probably just because nan != nan
. Maybe we should adjust the input values to avoid nans.
abergeron commented
Or rather, we get nans instead of 0. That a bit worse.