penquins: a python client for Kowalski
penquins
is a python client for Kowalski, a multi-survey data archive and alert broker for time-domain astronomy.
Install penquins
from PyPI:
pip install penquins --upgrade
Connect to a Kowalski instance:
from penquins import Kowalski
username = "<username>"
password = "<password>"
protocol, host, port = "https", "<host>", 443
kowalski = Kowalski(
username=username,
password=password,
protocol=protocol,
host=host,
port=port
)
When connecting to only one instance, it will be labeled as "default". Keep this in mind when retrieving the results of your queries.
Connect to multiple Kowalski instances:
from penquins import Kowalski
instances = {
"kowalski": {
"name": "kowalski",
"host": "<host>",
"protocol": "https"
"port": 443,
"token": "<token>" # or username and password
},
...
}
kowalski = Kowalski(instances=instances)
When using multiple instances at once, you can specify a single instance to query using its name when calling query(name=...)
, or no name at all. If no name is provided and the catalog(s) being queried is/are available on multiple instances, penquins will divide the load between instances automagically.
When retrieving the results, you'll have to use the instance(s) name instead of "default", or simply iterate over the results by instance and merge the results.
It is recommended to authenticate once and then just reuse the generated token:
token = kowalski.token
print(token)
kowalski = Kowalski(
token=token,
protocol=protocol,
host=host,
port=port
)
Check connection:
kowalski.ping()
Most users will be interacting with Kowalski using the Kowalski.query
method.
Retrieve available catalog names:
query = {
"query_type": "info",
"query": {
"command": "catalog_names",
}
}
response = kowalski.query(query=query)
data = response.get("default").get("data")
Query for 7 nearest sources to a sky position, sorted by the spheric distance, with a near
query:
query = {
"query_type": "near",
"query": {
"max_distance": 2,
"distance_units": "arcsec",
"radec": {"query_coords": [281.15902595, -4.4160933]},
"catalogs": {
"ZTF_sources_20210401": {
"filter": {},
"projection": {"_id": 1},
}
},
},
"kwargs": {
"max_time_ms": 10000,
"limit": 7,
},
}
response = kowalski.query(query=query)
data = response.get("default").get("data")
Retrieve available catalog names:
query = {
"query_type": "info",
"query": {
"command": "catalog_names",
}
}
response = k.query(query=query)
data = response.get("default").get("data")
Query for 7 nearest sources to a sky position, sorted by the spheric distance, with a near
query:
query = {
"query_type": "near",
"query": {
"max_distance": 2,
"distance_units": "arcsec",
"radec": {"query_coords": [281.15902595, -4.4160933]},
"catalogs": {
"ZTF_sources_20210401": {
"filter": {},
"projection": {"_id": 1},
}
},
},
"kwargs": {
"max_time_ms": 10000,
"limit": 7,
},
}
response = k.query(query=query)
data = response.get("default").get("data")
Run a cone_search
query:
query = {
"query_type": "cone_search",
"query": {
"object_coordinates": {
"cone_search_radius": 2,
"cone_search_unit": "arcsec",
"radec": {
"ZTF20acfkzcg": [
115.7697847,
50.2887778
]
}
},
"catalogs": {
"ZTF_alerts": {
"filter": {},
"projection": {
"_id": 0,
"candid": 1,
"objectId": 1
}
}
}
},
"kwargs": {
"filter_first": False
}
}
response = kowalski.query(query=query)
data = response.get("default").get("data")
Run a find
query:
q = {
"query_type": "find",
"query": {
"catalog": "ZTF_alerts",
"filter": {
"objectId": "ZTF20acfkzcg"
},
"projection": {
"_id": 0,
"candid": 1
}
}
}
response = kowalski.query(query=q)
data = response.get("default").get("data")
Run a batch of queries in parallel:
queries = [
{
"query_type": "find",
"query": {
"catalog": "ZTF_alerts",
"filter": {
"candid": alert["candid"]
},
"projection": {
"_id": 0,
"candid": 1
}
}
}
for alert in data
]
responses = k.query(queries=queries, use_batch_query=True, max_n_threads=4)
When using multiple instances at once, you can specify a single instance to query using its name when calling query(name=...)
, or no name at all. If no name is provided, and the catalog(s) being queried is/are available on multiple instances, penquins will divide the load between instances automagically.
When retrieving the results, you'll have to use the instance(s) name instead of "default", or simply iterate over the results by instance and merge the results.
Any of the queries mentioned for single instance querying also work here.
No instance name specified:
q = {
"query_type": "find",
"query": {
"catalog": "ZTF_alerts",
"filter": {
"objectId": "ZTF20acfkzcg"
},
"projection": {
"_id": 0,
"candid": 1
}
}
}
response = kowalski.query(query=q)
data = response.get(<instance_name).get("data") # retrieving data from one instance
# OR
data = [] # or {} depending on the query's expected result, differs by query type
for instance, instance_results in response.items():
for result in instance_results:
data.append(result.get('data'))
Instance name specified:
q = {
"query_type": "find",
"query": {
"catalog": "ZTF_alerts",
"filter": {
"objectId": "ZTF20acfkzcg"
},
"projection": {
"_id": 0,
"candid": 1
}
}
}
response = kowalski.query(query=q, name=<instance_name>)
data = response.get(<instance_name).get("data") # retrieving data from one instance
Users can interact with Kowalski's API
in a more direct way using the Kowalski.api
method.
Users with admin privileges can add/remove users to/from the system:
username = "noone"
password = "nopas!"
email = "user@caltech.edu"
request = {
"username": username,
"password": password,
"email": email
}
response = kowalski.api(method="post", endpoint="/api/users", data=request)
response = kowalski.api(method="delete", endpoint=f"/api/users/{username}")
Please refer to https://realpython.com/pypi-publish-python-package/ for a detailed guide.
pip install bumpversion
export PENQUINS_VERSION=2.4.0
bumpversion --current-version $PENQUINS_VERSION minor setup.py penquins/penquins.py
python setup.py sdist bdist_wheel
twine check dist/*$PENQUINS_VERSION*
twine upload dist/*$PENQUINS_VERSION*
username: __token__
token: <TOKEN>