/AGPCNet

Official Implementation of Attention-Guided Pyramid Context Networks for Infrared Small Target Detection

Primary LanguagePythonMIT LicenseMIT

Attention-Guided Pyramid Context Networks

Paper Link
Authors: Tianfang Zhang, Lei Li, Siying Cao, Tian Pu and Zhenming Peng

Train

python train.py --net-name agpcnet_1 --batch-size 8 --save-iter-step 20 --dataset mdfa
python train.py --net-name agpcnet_1 --batch-size 8 --save-iter-step 40 --dataset sirstaug
python train.py --net-name agpcnet_1 --batch-size 8 --save-iter-step 100 --dataset merged

Inference

python inference.py --pkl-path {checkpoint path} --image-path {image path}

Evaluation

python evaluation.py --dataset {dataset name} 
                     --sirstaug-dir {base dir of sirstaug}
                     --mdfa-dir {base dir of MDFA}
                     --pkl-path {checkpoint path}
Methods Data Precision Recall mIoU Fmeasure AUC Download
AGPCNet+ResNet18 MDFA 0.5939 0.7241 0.4843 0.6525 0.8682 model
AGPCNet+ResNet18 SIRST Aug 0.8323 0.8542 0.7288 0.8431 0.9344 model
AGPCNet+ResNet18 Merged 0.7453 0.8384 0.6517 0.7891 0.9194 model

Figure. Illustration of ROC compared with state-of-the-art methods.

Evaluation of model-driven algorithms based on traditional metrics refers [ISTD-python].

@article{zhang2023attention,
  title={Attention-guided pyramid context networks for detecting infrared small target under complex background},
  author={Zhang, Tianfang and Li, Lei and Cao, Siying and Pu, Tian and Peng, Zhenming},
  journal={IEEE Transactions on Aerospace and Electronic Systems},
  year={2023},
  doi={10.1109/TAES.2023.3238703},
  publisher={IEEE}
}