WWW'22 Distributional Contrastive Embedding for Clarification-based Conversational Critiquing

Authors: Tianshu Shen, Zheda Mai, Ga Wu, Scott Sanner

All the compiling scripts can be found under ./cluster_bash/, where experiments were ran using Compute Canada

Dataset:

  • Yelp:
  • ML10M:

Hyperparameter tuning:

  • configuration folder: ./conf_hp_search/
    For example, to run the hyperparameter-tuning script for the model using one of the configurations, run the following:
python hp_search.py --model_name VAEmultilayer_contrast --data_name yelp_SIGIR --conf VAEcontrast_tuning1.config --fold_name fold0 --top_items 10

Model Evaluation:

  • configuration folder: ./conf/
    To run model evaluation for a set of hyperparameters:
python model_evaluate.py --model_name VAEmultilayer_contrast --data_name yelp_SIGIR --conf VAEcontrast1.config --log_dir VAEcontrast1 --top_items 10 --rating_threshold 3

Save Model:

  • configuration folder: ./conf/
    To save the model after the model evaluation step:
python model_save.py --model_name VAEmultilayer_contrast --data_name yelp_SIGIR --data_dir fold0 --conf VAEmultilayer_contrast2.config --log_dir VAEmultilayer_contrast2 --top_items 10

Simulate Critiquing:

  • configuration folder: ./conf_simulate/ All the configurations for different critiquing/clarification-based critiquing tasks are listed under the specified folder. For example, to run the simulation task for DCE's experiment critiquing scenario using the Yelp dataset:
python simulate_yelp.py --saved_model models_DCE-VAE/VAEmultilayer_contrast3.pt --data_name yelp_SIGIR --data_dir fold0 --conf sim_abs_diff_neg1_noise0_expert.config --top_items 10

Directory Utilities

  • cluster_bash stores all the bash scripts used to run the experiments, all subdirectory names are self-explanatory. All the bash scripts that are named with run_<dataset>.sh are used for compute canada executions and are not essential.
  • conf_<hp_search/simulate/> are the configurations for the model experiments.
  • experiments stores the experiment results presented in the paper
  • models stores the models used in the paper
  • saves stores the models and their corresponding model performance
  • tables stores the experiment tables for the clarification-critiquing tasks

Citation

Please cite:

@article{shen2022distributional,
    title={Distributional Contrastive Embedding for Clarification-based Conversational Critiquing},
    author={Shen, Tianshu and Mai, Zheda and Wu, Ga and Sanner, Scott},
    year={2022}
  }