/WavTokenizer

SOTA discrete acoustic codec models with 40 tokens per second for audio language modeling

Primary LanguagePythonMIT LicenseMIT

WavTokenizer

SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling

arXiv demo model

🎉🎉 with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second!

🎉🎉 with WavTokenizer, You can get strong reconstruction results.

🎉🎉 WavTokenizer owns rich semantic information and is build for audio language models such as GPT4-o.

🔥 News

  • 2024.08: We release WavTokenizer on arxiv.

result

Installation

To use WavTokenizer, install it using:

pip install git+https://github.com/Tomiinek/WavTokenizer

Infer

Part1: Reconstruct audio from raw wav

import torch
import torchaudio
from wavtokenizer import convert_audio, WavTokenizer

device = 'cpu'
config_path = "configs/xxx.yaml"
model_path = "checkpoints/xxx.ckpt"
audio_outpath = "xxx"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)

wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
wav = wav.to(device)

bandwidth_id = torch.tensor([0])
features, discrete_code = wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) 

torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16)

Part2: Generating discrete codecs

import torch
import torchaudio
from wavtokenizer import convert_audio, WavTokenizer

device = 'cpu'
config_path = "configs/xxx.yaml"
model_path = "checkpoints/xxx.ckpt"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)

wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
wav = wav.to(device)

bandwidth_id = torch.tensor([0])
_, discrete_code = wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)

Part3: Audio reconstruction through codecs

# audio_tokens [n_q,1,t] / [n_q,t]
features = wavtokenizer.codes_to_features(audio_tokens)
bandwidth_id = torch.tensor([0])  
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)

Available models

🤗 links to the Huggingface model hub.

Model name HuggingFace Corpus Token/s Domain Open-Source
WavTokenizer-small-600-24k-4096 🤗 LibriTTS 40 Speech √
WavTokenizer-small-320-24k-4096 🤗 LibriTTS 75 Speech √
WavTokenizer-medium-600-24k-4096 🤗 10000 Hours 40 Speech, Audio, Music Coming Soon
WavTokenizer-medium-320-24k-4096 🤗 10000 Hours 75 Speech, Audio, Music Coming Soon
WavTokenizer-large-600-24k-4096 🤗 80000 Hours 40 Speech, Audio, Music Coming Soon
WavTokenizer-large-320-24k-4096 🤗 80000 Hours 75 Speech, Audio, Music Coming Soon

Training

Step1: Prepare train dataset

# Process the data into a form similar to data/demo.txt

Step2: Modifying configuration files

# configs/xxx.yaml
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device

Step3: Start training process

Refer to Pytorch Lightning documentation for details about customizing the training pipeline.

python scripts/train.py fit --config configs/xxx.yaml

Citation

If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer:

@misc{ji2024wavtokenizerefficientacousticdiscrete,
      title={WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling}, 
      author={Shengpeng Ji and Ziyue Jiang and Xize Cheng and Yifu Chen and Minghui Fang and Jialong Zuo and Qian Yang and Ruiqi Li and Ziang Zhang and Xiaoda Yang and Rongjie Huang and Yidi Jiang and Qian Chen and Siqi Zheng and Wen Wang and Zhou Zhao},
      year={2024},
      eprint={2408.16532},
      archivePrefix={arXiv},
      primaryClass={eess.AS},
      url={https://arxiv.org/abs/2408.16532}, 
}

@misc{ji2024languagecodec,
      title={Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models}, 
      author={Shengpeng Ji and Minghui Fang and Ziyue Jiang and Rongjie Huang and Jialung Zuo and Shulei Wang and Zhou Zhao},
      year={2024},
      eprint={2402.12208},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}