ST-Norm

This is a implementation of ST-Norm. The implementations of backbone Wavenet is cited from the published resource.

Requirements

Python 3.7
Numpy >= 1.17.4
Pandas >= 1.0.3
Pytorch >= 1.4.0

Model Training

python main.py --mode train --snorm 1 --tnorm 1

Arguments

model: backbone architecture (wavenet / tcn / transformer).
snorm: whether use spatial normalization.
tnorm: whether use temporal normalization.
dataset: dataset name.
version: version number.
hidden_channels: number of hidden channels.
n_pred: number of output steps.
n_his: number of input steps.
n_layers: number of hidden layers.

Model Evaluation

python main.py --mode eval --snorm 1 --tnorm 1

Citation

@inproceedings{deng2021st,
  title={ST-Norm: Spatial and Temporal Normalization for Multi-variate Time Series Forecasting},
  author={Deng, Jinliang and Chen, Xiusi and Jiang, Renhe and Song, Xuan and Tsang, Ivor W},
  booktitle={Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},
  pages={269--278},
  year={2021}
}
@misc{deng2021multiview,
    title={A Multi-view Multi-task Learning Framework for Multi-variate Time Series Forecasting},
    author={Jinliang Deng and Xiusi Chen and Renhe Jiang and Xuan Song and Ivor W. Tsang},
    year={2021},
    eprint={2109.01657},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}