/FMDH

source code for paper "Fast and Multilevel Semantic-Preserving Discrete Hashing" on BMVC-2019

A pytorch implementation for paper "Fast and Multilevel Semantic-Preserving Discrete Hashing" BMVC-2019

REQUIREMENTS

  1. python >= 3.5.2
  2. pytorch >= 0.4

DATASETS

  1. MIRFLICKR-25K
  2. MSCOCO: train val

USAGE

usage: fmdh_mirflickr.py [-h] [--bits BITS] [--gpu GPU] [--arch ARCH]
                         [--max-iter MAX_ITER] [--epochs EPOCHS]
                         [--batch-size BATCH_SIZE] [--topk TOPK] [--m M]
                         [--m_wap M_WAP] [--C C] [--num-samples NUM_SAMPLES]
                         [--alpha ALPHA] [--beta BETA]
                         [--learning-rate LEARNING_RATE]

fmdh_mirflickr

optional arguments:
  -h, --help            show this help message and exit
  --bits BITS           binary code length (default: 16,32,64)
  --gpu GPU             selected gpu (default: 0)
  --arch ARCH           model name (default: resnet152)
  --max-iter MAX_ITER   maximum iteration (default: 20)
  --epochs EPOCHS       number of epochs (default: 1)
  --batch-size BATCH_SIZE
                        batch size (default: 64)
  --topk TOPK           top k (default: 100)
  --m M                 ndcg@m (default: 100)
  --m_wap M_WAP         ndcg@m (default: 100)
  --C C                 class number (default: 24)
  --num-samples NUM_SAMPLES
                        hyper-parameter: number of samples (default: 2000)
  --alpha ALPHA         hyper-parameter: alpha (default: 100000)
  --beta BETA           hyper-parameter: beta (default: 100)
  --learning-rate LEARNING_RATE
                        hyper-parameter: learning rate (default: 0.001)

RESULT

NDCG@100

Dataset Code Length
16 bits32 bits 64 bits
MIRFLICKR-25K0.5517 0.5793 0.6028
MSCOCO0.5036 0.5370 0.5541

ACG@100

Dataset Code Length
16 bits32 bits 64 bits
MIRFLICKR-25K2.501 2.739 2.760
MSCOCO1.501 1.618 1.633

Weighted MAP@100

Dataset Code Length
16 bits32 bits 64 bits
MIRFLICKR-25K2.536 2.723 2.722
MSCOCO1.530 1.697 1.708