pip install -r requirements.txt
- pytorch >= 1.0
- loguru
- cifar10-gist.mat password: umb6
- cifar-10_alexnet.t password: f1b7
- nus-wide-tc21_alexnet.t password: vfeu
- imagenet-tc100_alexnet.t password: 6w5i
usage: run.py [-h] [--dataset DATASET] [--root ROOT]
[--code-length CODE_LENGTH] [--max-iter MAX_ITER]
[--num-anchor NUM_ANCHOR] [--num-train NUM_TRAIN]
[--num-query NUM_QUERY] [--topk TOPK] [--gpu GPU] [--seed SEED]
[--evaluate-interval EVALUATE_INTERVAL] [--lamda LAMDA]
[--nu NU] [--sigma SIGMA]
SDH_PyTorch
optional arguments:
-h, --help show this help message and exit
--dataset DATASET Dataset name.
--root ROOT Path of dataset
--code-length CODE_LENGTH
Binary hash code length.(default:
12,16,24,32,48,64,128)
--max-iter MAX_ITER Number of iterations.(default: 5)
--num-anchor NUM_ANCHOR
Number of anchor.(default: 1000)
--topk TOPK Calculate map of top k.(default: all)
--gpu GPU Using gpu.(default: False)
--seed SEED Random seed.(default: 3367)
--evaluate-interval EVALUATE_INTERVAL
Evaluation interval.(default: 1)
--lamda LAMDA Hyper-parameter.(default: 1)
--nu NU Hyper-parameter.(default: 1e-5)
--sigma SIGMA Hyper-parameter. 2e-3 for cifar-10-gist, 5e-4 for
others.
cifar-10-gist: GIST features, 1000 query images, 5000 training images, sigma=2e-3, map@ALL.
cifar-10-alexnet. Alexnet features, 1000 query images, 5000 training images, sigma=5e-4, map@ALL.
nus-wide-tc21-alexnet. Alexnet features, top 21 classes, 2100 query images, 10500 training images, sigma=5e-4, map@5000.
imagenet-tc100-alexnet: Alexnet features, top 100 classes, 5000 query images, 10000 training images, sigma=5e-4, map@1000.
bits | 12 | 16 | 24 | 32 | 48 | 64 | 128 |
---|---|---|---|---|---|---|---|
cifar-10-gist@ALL | 0.3964 | 0.4335 | 0.4357 | 0.4611 | 0.4729 | 0.4826 | 0.4973 |
cifar-10-alexnet@ALL | 0.4966 | 0.4837 | 0.5209 | 0.5373 | 0.5411 | 0.5629 | 0.5750 |
nus-wide-tc21-alexnet@5000 | 0.7504 | 0.7684 | 0.7745 | 0.7932 | 0.7912 | 0.8035 | 0.8162 |
imagenet-tc100-alexnet@1000 | 0.3529 | 0.4166 | 0.4790 | 0.5096 | 0.5429 | 0.5586 | 0.5974 |