Tensorflow implementations of Iterative Pruning, K-means Quantization, Dynamic Surgery Network, Incremental Network Quantization
Codes are implemented according to reference paper and codes.
Masks and modified weights are produced on Single Machine.
Re-training process are conducted on Google Cloud
All hyperparameters are set in config.py except DNS(to replicate its open-sourse code on Caffee)
All codes except Analysis&Experiments part are documented.
densenet.py: essential DenseNet modified from https://github.com/LaurentMazare/deep-models/tree/master/densenet
densenetfinaltest.py: inference of DenseNet
densenetfinalprune.py: produce masks & pruned weights
dnet_prune.ipynb: re-training of Iterative Pruning
densenetfinalkmeans.py: produce masks & K-Qed weights
dnet_kmeans.ipynb: re-training of codebooks after K-means Quantization
densenetfinalDNS.py: DNS
densenetfinalinq.py: produce masks & INQed weights
dnet_INQ.ipynb: re-training of INQ
Pruning+INQ: INQPruning.ipynb
Pruning+K-Q: KmeansPruning.ipynb
dnet_dns_analysis.ipynb
dnet_dns_analysis2.ipynb
dnet_INQ-analysis.ipynb
dnet_prune_analysis.ipynb
https://github.com/gstaff/tfzip/tree/master/tfzip
https://github.com/garion9013/impl-pruning-TF
https://github.com/yiwenguo/Dynamic-Network-Surgery
https://arxiv.org/abs/1510.00149