Example scripts for the detection of lanes using the ultra fast lane detection v2 model in ONNX/TensorRT.
Example scripts for the detection of objects using the YOLOv5/YOLOv5-lite/YOLOv8 model in ONNX/TensorRT.
-
OpenCV, Scikit-learn, onnxruntime, pycuda and pytorch.
-
Install :
The
requirements.txt
file should list all Python libraries that your notebooks depend on, and they will be installed using:pip install -r requirements.txt
-
Comvert Onnx to TenserRT model :
python convertOnnxToTensorRT.py
-
Video inference :
- Setting Config :
Note : can support onnx/tensorRT format model. But it needs to match the same model type.
lane_config = { "model_path": "./TrafficLaneDetector/models/culane_res18.trt", "model_type" : LaneModelType.UFLDV2_CULANE } object_config = { "model_path": './ObjectDetector/models/yolov8l-coco.trt', "model_type" : ObjectModelType.YOLOV8, "classes_path" : './ObjectDetector/models/coco_label.txt', "box_score" : 0.4, "box_nms_iou" : 0.45 }
Target Model Type Describe Lanes LaneModelType.UFLD_TUSIMPLE
Support Tusimple data with ResNet18 backbone. Lanes LaneModelType.UFLD_CULANE
Support CULane data with ResNet18 backbone. Lanes LaneModelType.UFLDV2_TUSIMPLE
Support Tusimple data with ResNet18/34 backbone. Lanes LaneModelType.UFLDV2_CULANE
Support CULane data with ResNet18/34 backbone. Object ObjectModelType.YOLOV5
Support yolov5n/s/m/l/x model. Object ObjectModelType.YOLOV5_LITE
Support yolov5lite-e/s/c/g model. Object ObjectModelType.YOLOV8
Support yolov8n/s/m/l/x model. - Run :
python demo.py
- Setting Config :
-
Display Switch
GPLv3 License key requirements :
- Disclose Source
- License and Copyright Notice
- Same License
- State Changes