Genumerics is a high-performance .NET library for generic numeric operations. It is compatible with .NET Framework 4.5+ and .NET Standard 2.0+.
You may have come across while working in .NET where you would like to perform numeric operations over a generic numeric type. Unfortunately .NET doesn't provide a way to do that natively.
This library fills that gap by providing most standard numeric operations for the following built-in numeric types and their nullable equivalents with the ability to add support for other numeric types.
sbyte
, byte
, short
, ushort
, int
, uint
, long
, ulong
, float
, double
, decimal
, nint
, nuint
, and BigInteger
Below is a demo of some basic uses of Genumerics in the form of unit tests.
using Genumerics;
using NUnit.Framework;
public class GenumericsDemo
{
[TestCase(4, 5, 9)]
[TestCase(2.25, 6.75, 9.0)]
public void Add<T>(T left, T right, T expected)
{
Assert.AreEqual(expected, Number.Add(left, right));
Assert.AreEqual(expected, AddWithOperator<T>(left, right));
}
private T AddWithOperator<T>(Number<T> left, Number<T> right) => left + right;
[TestCase(9, 6, true)]
[TestCase(3.56, 4.07, false)]
public void GreaterThan<T>(T left, T right, bool expected)
{
Assert.AreEqual(expected, Number.GreaterThan(left, right));
Assert.AreEqual(expected, GreaterThanWithOperator<T>(left, right));
}
private bool GreaterThanWithOperator<T>(Number<T> left, Number<T> right) => left > right;
[TestCase(4, 4.0)]
[TestCase(27.0, 27)]
public void Convert<TFrom, TTo>(TFrom value, TTo expected)
{
Assert.AreEqual(expected, Number.Convert<TFrom, TTo>(value));
Assert.AreEqual(expected, Number.Create(value).To<TTo>());
}
[TestCase("98765", 98765)]
[TestCase("12.3456789", 12.3456789)]
public void Parse<T>(string value, T expected)
{
Assert.AreEqual(expected, Number.Parse<T>(value));
}
[TestCase(123, null, "123")]
[TestCase(255, "X", "FF")]
public void ToString<T>(T value, string? format, string expected)
{
Assert.AreEqual(expected, Number.ToString(value, format));
}
[TestCase(sbyte.MaxValue)]
[TestCase(float.MaxValue)]
public void MaxValue<T>(T expected)
{
Assert.AreEqual(expected, Number.MaxValue<T>());
}
}
The summation algorithms below were benchmarked in .NET Core 3.0 and .NET 4.8 to determine the relative performance of the library compared with an int
specific algorithm. As can be seen in the results, the performance is equivalent.
Method | Mean | Error | StdDev | Ratio |
---|---|---|---|---|
Sum | 531.0 ns | 1.40 ns | 1.31 ns | 1.00 |
SumNumber | 521.2 ns | 1.41 ns | 1.32 ns | 0.98 |
SumNumber2 | 531.7 ns | 0.81 ns | 0.76 ns | 1.00 |
SumAdd | 530.1 ns | 1.04 ns | 0.97 ns | 1.00 |
SumAdd2 | 532.2 ns | 1.60 ns | 1.33 ns | 1.00 |
using System;
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Jobs;
using BenchmarkDotNet.Running;
using Genumerics;
public class Program
{
static void Main() => BenchmarkRunner.Run<SumBenchmarks<int, DefaultNumericOperations>>();
}
[SimpleJob(RuntimeMoniker.Net461), SimpleJob(RuntimeMoniker.NetCoreApp30), LegacyJitX86Job]
public class SumBenchmarks<T, TNumericOperations>
where TNumericOperations : struct, INumericOperations<T>
{
private int[] _intItems;
private T[] _items;
[Benchmark(Baseline = true)]
public int Sum()
{
int sum = 0;
foreach (int item in _intItems)
{
sum += item;
}
return sum;
}
[Benchmark]
public T SumNumber()
{
Number<T> sum = default;
foreach (T item in _items)
{
sum += item;
}
return sum;
}
[Benchmark]
public T SumNumber2()
{
Number<T, TNumericOperations> sum = default;
foreach (T item in _items)
{
sum += item;
}
return sum;
}
[Benchmark]
public T SumAdd()
{
T sum = default;
foreach (T item in _items)
{
sum = Number.Add(sum, item);
}
return sum;
}
[Benchmark]
public T SumAdd2()
{
T sum = default;
TNumericOperations operations = default;
foreach (T item in _items)
{
sum = operations.Add(sum, item);
}
return sum;
}
[GlobalSetup]
public void Setup()
{
_intItems = new int[1000];
_items = new T[1000];
Random rand = new Random();
for (int i = 0; i < 1000; ++i)
{
int value = rand.Next(10);
_intItems[i] = value;
_items[i] = Number.Create(value).To<T>();
}
}
}
See fuget for exploring the interface.