/XRayGAN

Primary LanguagePython

XRayGAN: Consistency-preserving Generation of X-ray Images from Radiology Reports

This is the Pytorch implementaion of the paper:

XRayGAN: Consistency-preserving Generation of X-ray Images from Radiology Reports

Xingyi Yang, Nandiraju Gireesh, Eric Xing, Pengtao Xie

paper

arch

This repo contains the code for:

  1. The Implemention of XRayGAN for X-ray generation from medical report
  2. Training & Evaluation on Open-i and MIMIC-p10 dataset
  3. Compute SSIM, Inception sore, FID for GAN evaluation
  4. Re-implemention of AttnGAN, StackGAN and GAN-INT-CLS for X-ray generation

Dependencies

  • pytorch=1.3.0
  • torchvision
  • pydicom
  • tensorboard=1.14.0
  • tqdm
  • pandas
  • opencv
  • matplotlib

File Orgnization

    - CheXNet   : Feature extractor for IS,FID score

    - config    : Configuration(Hyperparameter, path and dataset) for code running
        - $DatasetName$_$ModelName$.json        : Train Config
        - $DatasetName$_$ModelName$_test.json   : Test Config

    - datasplit
        - $DatasetName$_images.csv              : Name index of images
        - $DatasetName$_reports.csv             : Name index of reports
        - $DatasetName$_report_$subset$.csv :Data-split for openi and MIMIC-CXR dataset

    - models
        - AttnGAN.py    : Reimplementation of AttnGAN
        - StackGAN.py   : Reimplementation of StackGAN
        - Encoder.py
        - Decoder.py
        - Discriminator.py
        - HALSTM.py     : Implementation of Word Attntion/Sentence Attntion
        - Siamese.py    : View Consistency Network

    - utils
        - $Evaluation metrics$.py        : Compute evaluation metrics
        - $DatasetName$DataSet.py        : Data loader
        - create_csv_for$DatasetName$.py : Create Namelist for dataset
        - proprcessing.py

    - evaluate.py
    - tester_$ModelName$.py
    - trainer_$ModelName$.py

Dataset

We use two datasets:

  1. Open-i
    • Download the compressed tar file, uncompress it ./data folder
    • Create a name list for it using,
         python create_csv_foropeni.py
    
  2. MIMIC-CXR
    • To access MIMIC-CXR, you need to first sign an agreement on the official website
    • Download the compressed tar file, uncompress it ./data folder
    • Create a name list for it using,
         python create_csv_forMIMIC.py
    

Usage

  1. [Optional] Download checkpoints from google drive
  1. Train your Generative model to generate X-rays

    • Edit the config file for hyperparamter setting. Example:
      {
      "EXPER_NAME":"Text-to-image XRayGAN OPENI256",
      "ENCODER":"harchyENCODER",
      "DECODER":"baseDECODERv3",
      "DISCRIMINATOR":"PDISCRIMINATOR",
      "RNN_CELL":"LSTM",
    
      "beta1" : 0.9,
      "E_HIDEN_SIZE":128,
      "E_EMBED_SIZE":128,
    
      "D_CHANNEL_SIZE":512,
    
      "DIS_CHANNEL_SIZE":64,
    
      "DATASET":"OPENI",
      "GPU_ID": "0,1,2,3",
      "DICTIONARY":"dict.json",
      "CHECKPOINT_ENCODER": "./checkpoint/OPENI/XRayGAN/encoder",
      "CHECKPOINT_DECODER": "./checkpoint/OPENI/XRayGAN/decoder",
      "CHECKPOINT_D": "./checkpoint/OPENI/XRayGAN/D",
      "DATA_ROOT": "./data",
      "TEXT_CSV": "./config/openi_reports.csv",
      "IMG_CSV": "./config/openi_images.csv",
    
      "CONTENT_LOSS":"L2",
      "ONLY_G_LR": 0.0002,
      "IMAGE_SIZE":[256,256],
      "BATCH_SIZE": [96,48,24,12],
      "MAX_EPOCH": [90,90,120,120],
      "SIAMESE_EPOCH": [15,15,15,20],
      "G_initer": 1,
      "D_initer": 1,
      "LR_DECAY_EPOCH": [[45],[45,70],[45,70,90],[45,70,90]],
      "CHECKPOINT_EPOCH": 10,
      "LR_SIAMESE_DECAY_EPOCH": 10,
      "G_LR": [0.0003,0.0003,0.0002,0.0001],
      "D_LR": [0.0003,0.0003,0.0002,0.0001],
      "S_LR": 0.01,
      "PIXEL_LOSS_RATIO":100,
      "ADV_LOSS_RATIO":1,
      "ID_LOSS_RATIO":1
    }
    
    
    • Run the trainer that you want(Checkpoint, Tensorboard record will be automaticaly saved)
  2. Test your model to generate Xrays

    • Edit the config file for checkpoint path setting. Then Run the code to save the images to a folder. Example:
      {
      "EXPER_NAME":"Text-to-image XRayGAN Open-i",
      "ENCODER":"harchyENCODER",
      "DECODER":"baseDECODERv3",
      "PDECODER":"PDECODERv3",
      "DISCRIMINATOR":"PDISCRIMINATOR",
      "RNN_CELL":"LSTM",
      "beta1" : 0.9,
      "E_HIDEN_SIZE":128,
      "E_EMBED_SIZE":128,
    
      "D_CHANNEL_SIZE":512,
    
      "DIS_CHANNEL_SIZE":64,
      "DATASET":"MIMIC-CXR",
      "GPU_ID": "0,1",
      "DICTIONARY":"dict.json",
      "RESUME_ENCODER": "./checkpoint/OPENI/XRayGAN/encoder/Encoder_harchyENCODER_epoch_140_checkpoint.pth",
      "RESUME_DECODER_F": "./checkpoint/OPENI/XRayGAN/decoder/Decoder_baseDECODERv3_F_epoch_140_checkpoint.pth",
      "RESUME_DECODER_L": "./checkpoint/OPENI/XRayGAN/decoder/Decoder_baseDECODERv3_L_epoch_140_checkpoint.pth",
      "RESUME_D":"null",
    
      "DATA_ROOT": "./data",
      "TEXT_CSV": "./config/openi_reports.csv",
      "IMG_CSV": "./config/openi_images.csv",
      "CONTENT_LOSS": "L2",
      "IMAGE_SIZE":[256,256]
    }
    
  3. Evaluation. We have provided the code for evaluation. Just save the generated images and original images in two seperated folders. Then Run

        python evaluate.py\
        --path1 [path to the generated images]
        --path2 [path to the original images]
        --Sia_resume    [path to the VCN checkpoint]
    

Citation

@article{yang2020xraygan,
  title={XRayGAN: Consistency-preserving Generation of X-ray Images from Radiology Reports},
  author={Yang, Xingyi and Gireesh, Nandiraju and Xing, Eric and Xie, Pengtao},
  journal={arXiv preprint arXiv:2006.10552},
  year={2020}
}

References

  1. CheXNet: https://github.com/arnoweng/CheXNet
  2. StackGAN: https://github.com/hanzhanggit/StackGAN-v2
  3. AttnGAN: https://github.com/taoxugit/AttnGAN