TweetyNET test set first pass
Closed this issue · 2 comments
Before we know for certain that we want to integrate TweetyNET into this pipeline, we definitely want to perform a test on the same test set that we tested Microfaune and BirdNET-Lite on.
Relevant dataset: https://drive.google.com/drive/u/0/folders/1Z28g9-iik1LkXXdDbIzq9-d2B0-rCbUj
Mixed_Bird is the correct folder, and the uniform 3s binary labels are the ones I used.
Tested on random sample with 25% of Mixed_Bird data with the following parameters:
Notebook used: https://github.com/UCSD-E4E/passive-acoustic-biodiversity/blob/master/BinaryBirdDet/PyHa_Model_Comparison.ipynb
Outputted labels and statistics .csvs: https://drive.google.com/drive/u/1/folders/1cf55zV-gL51l4w4Npo5WymvpiMs7TBdF
# Parameters to define isolation behavior
isolation_parameters_micro = {
"model" : "microfaune",
"technique" : "chunk",
"threshold_type" : "median",
"threshold_const" : 4.0,
"threshold_min" : 0.25,
"window_size" : 2.0,
"chunk_size" : 3.0
}
isolation_parameters_birdnet = {
"model" : "birdnet",
"output_path" : "outputs",
"min_conf" : 0.25,
"filetype" : "wav",
"num_predictions" : 1,
"write_to_csv" : True
}
isolation_parameters_tweety = {
"model" : "tweetynet",
"tweety_output" : True,
"chunk_size" : 3.0
}
global_statistics results on full Mixed_Bird dataset
isolation_parameters_birdnet = {
"model" : "birdnet",
"output_path" : "outputs",
"min_conf" : 0.5,
"filetype" : "wav",
"num_predictions" : 1,
"write_to_csv" : True
}
isolation_parameters_micro = {
"model" : "microfaune",
"technique" : "chunk",
"threshold_type" : "median",
"threshold_const" : 4.0,
"threshold_min" : 0.5,
"window_size" : 2.0,
"chunk_size" : 3.0
}
isolation_parameters_tweety = {
"model" : "tweetynet",
"tweety_output" : True,
"chunk_size" : 3.0
}
I adapted PyHa to a Google Colab notebook for fun and to save my laptop from freezing, will clean this up later so the output is nicer