# Download the model weights
xrdcp root://cmseos.fnal.gov//store/user/klijnsma/hgcal/ckpts/ckpt_train_taus_integrated_noise_Oct20_212115_best_397.pth.tar .
# Download the data and extract
xrdcp root://cmseos.fnal.gov//store/user/klijnsma/hgcal/taus_2021_v1.tar.gz .
tar xf taus_2021_v1.tar.gz
# Download the singularity container
xrdcp root://cmseos.fnal.gov//store/user/klijnsma/hgcal/pytorch_2.0.0-cuda11.7-cudnn8-devel.sif .
# Clone necessary repositories
git clone -b oc_cuda git@github.com:tklijnsma/pytorch_cmspepr.git
git clone git@github.com:tklijnsma/cmspepr_hgcal_core.git
# Boot up the container, binding current wd to /wd
singularity run --bind $PWD:/wd pytorch_2.0.0-cuda11.7-cudnn8-devel.sif
Once inside the container:
export PYTHONPATH="/opt/conda/lib/python3.10/site-packages"
cd /wd
python -m venv env
source env/bin/activate
# Install torch_geometric with extensions
pip install torch_geometric
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cpu.html
# Install other standard packages
pip install matplotlib plotly tqdm
# Install the kNN/OC extensions for CPU
pip install -e pytorch_cmspepr/
pip install -e cmspepr_hgcal_core/
Note that pytorch is preinstalled in the container.
python plot3d.py
This script will create a file called myplots.html
, which can be opened in a browser.