We recommend using conda to manage dependencies. Make sure to install Conda before proceeding.
conda create --name oblique-merf -y python=3.8
conda activate oblique-merf
Install PyTorch with CUDA (this repo has been tested with CUDA 11.8) and tiny-cuda-nn.
cuda-toolkit
is required for building tiny-cuda-nn
.
pip install torch==2.0.1+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
cd nerfstudio
pip install -e .
cd ..
pip install -e .
Our data format requirements follow the instant-ngp convention.
To download the Matrix City dataset, visit the official page. You can opt to download the "small city" dataset to test your algorithm. This dataset follows the instant-ngp convention, so no preprocessing is required.
We highly recommend using Metashape to obtain camera poses from multi-view images. Then, use their script to convert camera poses to the COLMAP convention. Alternatively, you can use COLMAP to obtain the camera poses. After obtaining the data in COLMAP format, use ns-process-data
to generate the transforms.json
file.
ns-process-data images --data path/to/data --skip-colmap
Our loaders expect the following dataset structure in the source path location:
<location>
|---images
| |---<image 0>
| |---<image 1>
| |---...
|---sparse(optionally)
|---0
|---cameras.bin
|---images.bin
|---points3D.bin
|---transforms.json
ns-trian merf --data path/to/data
ns-eval --load_config path/to/config --render_output_path path/to/renders --output-path path/to/metrics
ns-baking --load-config path/to/output/config --baking_config.baking_path path/to/bakings
If you use this repo or find the documentation useful for your research, please consider citing:
@inproceedings{zeng2025oblique,
title={Oblique-MERF: Revisiting and Improving MERF for Oblique Photography},
author={Zeng, Xiaoyi and Song, Kaiwen and Yang, Leyuan and Deng, Bailin and Zhang, Juyong},
booktitle={International Conference on 3D Vision},
year={2025}
}
This repository's code is based on nerfstudio, MERF and City-on-Web. We are very grateful for their outstanding work.