/Bi-RPT

[CPAL 2024] "Cross-Quality Few-Shot Transfer for Alloy Yield Strength Prediction: A New Materials Science Benchmark and A Sparsity-Oriented Optimization Framework" by Xuxi Chen, Tianlong Chen, Everardo Yeriel Olivares, Kate Elder, Scott K. McCall, Aurelien Pierre Philippe Perron, Joseph T. McKeown, Bhavya Kailkhura, Zhangyang Wang, Brian Gallagher

Primary LanguagePython

Cross-Quality Few-Shot Transfer for Alloy Yield Strength Prediction: A New Materials Science Benchmark and A Sparsity-Oriented Optimization Framework

Environment

conda env create -f environment.yml
conda activate birpt

Datasets

The dataset can be found in this link. It can be also found in this link.

Experiments

Proof-of-concept Experiments

Experiments on CUB:

cd code/proof-of-concept-experiments
NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=4,5,6,7 python -u cub_finetune_gradient_unroll.py --imagenet_train_data <path-to-imagenet-train-data> --imagenet_val_data <path-to-imagenet-val-data> --data data/ --rate 0.2 --save_dir cub_unroll_lr_3.5 --epoch 95 --worker 16 --dist-url tcp://127.0.0.1:37703 --lamb 1e-4 --reg-lr 3.5 --imagenet-pretrained --lower_steps 1 --seed 1 --sign-lr 1e-4

Experiments on CUB (10-shots):

cd code/proof-of-concept-experiments
NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=4,5,6,7 python -u cub_finetune_gradient_unroll.py --imagenet_train_data <path-to-imagenet-train-data> --imagenet_val_data <path-to-imagenet-val-data> --data data/ --rate 0.2 --save_dir cub_unroll_lr_3.5 --epoch 95 --worker 16 --dist-url tcp://127.0.0.1:37703 --lamb 1e-4 --reg-lr 3.5 --imagenet-pretrained --lower_steps 1 --seed 1 --sign-lr 1e-4 --ten-shot