Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's Semantic Segmentation
Segmentation Models
See the implementation and the available networks in:Installation:
pip install -r requirements.txt
Copy the files inside the scripts to the utils folders inside the lib/python3.6/site-packages/segmentation_models_pytorch folder
Dataset:
Setup a txt file with the images paths as follows for training and validation:
path/to/image1.jpg path/to/mask1.png
path/to/image2.jpg path/to/mask2.png
path/to/image3.jpg path/to/mask3.png
or just the images paths for tests
path/to/image1.jpg
path/to/image2.jpg
path/to/image3.jpg
Setup the config file following the examples in the config folder
Execute:
python main.py --configs config_file.yml
Citation
@inproceedings{sparkinthedark2021,
author={Krinski, Bruno A. and Ruiz, Daniel V. and Todt, Eduardo},
booktitle={2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE)},
title={Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT’s Semantic Segmentation},
year={2021},
volume={},
number={},
pages={198-203},
doi={10.1109/LARS/SBR/WRE54079.2021.9605461}
}
@inproceedings{lightintheblack2022,
author = {Bruno Krinski and Daniel Ruiz and Eduardo Todt},
title = {Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT’s Semantic Segmentation},
booktitle = {Anais do XXII Simpósio Brasileiro de Computação Aplicada à Saúde},
location = {Teresina},
year = {2022},
keywords = {},
issn = {2763-8952},
pages = {156--167},
publisher = {SBC},
address = {Porto Alegre, RS, Brasil},
doi = {10.5753/sbcas.2022.222495},
url = {https://sol.sbc.org.br/index.php/sbcas/article/view/21628}
}