/odeintw

odeintw provides a wrapper of scipy.integrate.odeint that allows it to handle complex and matrix differential equations.

Primary LanguagePythonBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

odeintw

odeintw provides a wrapper of scipy.integrate.odeint that allows it to handle complex and matrix differential equations. That is, it can solve equations of the form

dZ/dt = F(Z, t, param1, param2, ...)

where t is real and Z is a real or complex array.

Since odeintw is just a wrapper of scipy.integrate.odeint, it requires scipy to be installed.

odeintw is available on PyPI: https://pypi.org/project/odeintw/

Example 1

To solve the equations

dz1/dt = -z1 * (K - z2)
dz2/dt = L - M*z2

where K, L and M are (possibly complex) constants, we first define the right-hand-side of the differential equations::

def zfunc(z, t, K, L, M):
    z1, z2 = z
    return [-z1 * (K - z2), L - M*z2]

The Jacobian is

def zjac(z, t, K, L, M):
    z1, z2 = z
    jac = np.array([[z2 - K, z1], [0, -M]])
    return jac

The following calls odeintw with appropriate arguments

# Initial conditions.
z0 = np.array([1+2j, 3+4j])

# Desired time samples for the solution.
t = np.linspace(0, 5, 101)

# Parameters.
K = 2
L = 4 - 2j
M = 2.5

# Call odeintw
z, infodict = odeintw(zfunc, z0, t, args=(K, L, M), Dfun=zjac,
                      full_output=True)

The components of the solution can be plotted with matplotlib as follows

import matplotlib.pyplot as plt

color1 = (0.5, 0.4, 0.3)
color2 = (0.2, 0.2, 1.0)
plt.plot(t, z[:, 0].real, color=color1, label='z1.real', linewidth=1.5)
plt.plot(t, z[:, 0].imag, '--', color=color1, label='z1.imag', linewidth=2)
plt.plot(t, z[:, 1].real, color=color2, label='z2.real', linewidth=1.5)
plt.plot(t, z[:, 1].imag, '--', color=color2, label='z2.imag', linewidth=2)
plt.xlabel('t')
plt.grid(True)
plt.legend(loc='best')
plt.show()

Plot:

Example 2

We'll solve the matrix differential equation

dA/dt = C * A

where A and C are real 2x2 matrices.

The differential equation is defined with the function

def asys(a, t, c):
    return c.dot(a)

Both a and c are assumed to be n x n matrices. The function asys will work for any n, but we'll specialize to 2 x 2 in our implementation of the Jacobian:

def ajac(a, t, c):
    # asys returns [[F[0,0](a,t), F[0,1](a,t),
    #                F[1,0](a,t), F[1,1](a,t)]]
    # This function computes jac[m, n, i, j]
    # jac[m, n, i, j] holds dF[m,n]/da[i,j]
    jac = np.zeros((2,2,2,2))
    jac[0, 0, 0, 0] = c[0, 0]
    jac[0, 0, 1, 0] = c[0, 1]
    jac[0, 1, 0, 1] = c[0, 0]
    jac[0, 1, 1, 1] = c[0, 1]
    jac[1, 0, 0, 0] = c[1, 0]
    jac[1, 0, 1, 0] = c[1, 1]
    jac[1, 1, 0, 1] = c[1, 0]
    jac[1, 1, 1, 1] = c[1, 1]

(As with odeint, giving an explicit Jacobian is optional.)

Now create the arguments and call odeintw:

# The matrix of coefficients `c`.  This is passed as an
# extra argument to `asys` and `ajac`.
c = np.array([[-0.5, -1.25],
              [ 0.5, -0.25]])

# Desired time samples for the solution.
t = np.linspace(0, 10, 201)

# a0 is the initial condition.
a0 = np.array([[0.0, 1.0],
               [2.0, 3.0]])

# Call `odeintw`.
sol = odeintw(asys, a0, t, Dfun=ajac, args=(c,))

The solution can be plotted with matplotlib:

import matplotlib.pyplot as plt

plt.figure(1)
plt.clf()
color1 = (0.5, 0.4, 0.3)
color2 = (0.2, 0.2, 1.0)
plt.plot(t, sol[:, 0, 0], color=color1, label='a[0,0]')
plt.plot(t, sol[:, 0, 1], color=color2, label='a[0,1]')
plt.plot(t, sol[:, 1, 0], '--', color=color1, linewidth=1.5, label='a[1,0]')
plt.plot(t, sol[:, 1, 1], '--', color=color2, linewidth=1.5, label='a[1,1]')
plt.legend(loc='best')
plt.grid(True)
plt.show()

Plot:

Copyright (c) 2015, Warren Weckesser

All rights reserved. See the LICENSE file for license information.