Unsupervised Coherent Video Cartoonization with Perceptual Motion Consistency. AAAI 2022. Arxiv
conda env create -f environment.yaml
conda activate video-animation- Preparing Training Data Download datasets from this drive and unzip to datasets folder.
- Download pretrained vgg from here and unzip, put it to
models/vgg19.npy - Start training.
CUDA_VISIBLE_DEVICES=0 python train.py --exp_name with-pmc --temporal_weight 1.0
Download Pretrained Network from google drive.
- Translate images in input directory and save into output directory.
python inference.py --input_path ${your_input_folder} --output_path ${your_output_folder} --model_path pretrained.ckptpython translate_video.py --input_video ${your_input_video} --output_dir ${your_output_folder} --model_path pretrained.ckpt| Images |
|---|
![]() |
![]() |
![]() |
![]() |
@inproceedings{Liu2022UnsupervisedCV,
title={Unsupervised Coherent Video Cartoonization with Perceptual Motion Consistency},
author={Zhenhuan Liu and Liang Li and Huajie Jiang and Xin Jin and Dandan Tu and Shuhui Wang and Zhengjun Zha},
booktitle={AAAI},
year={2022}
}
- WhiteBoxGAN by @SystemErrorWang
- Pytorch Lightening






