A pipeline framework for developing video and image processing applications. Supports multiple GPUs and Machine Learning toolkits. More details can be found here https://apra-labs.github.io/ApraPipes.
Automatically built and tested on Ubuntu 18.04, Jetson Boards and Windows 11 x64 Visual Studio 2017 Community (without CUDA)
OS | Version | With Cuda | Tests | Status |
---|---|---|---|---|
Windows | 2019 | No | ||
Windows | 2019 | Yes | ||
Ubuntu x64_86 | 20.04 | No | ||
Ubuntu ARM64 (Jetsons) | 18.04 | Yes | ||
Ubuntu x64_86-docker | 18.04 | Yes | No |
- Make account on developer.nvidia.com, else the next steps will show HTTP 404/403 errors
- Download and install CUDA tool kit based on your OS: Note: we test both with CUDA v10.2 and v11.7 so either is fine
- Ubuntu 18.04 : CUDA Toolkit 10.2
- Windows 10/11 : Cuda Toolkit 10.2
- Download Cudnn and extract where cuda is installed. Note: this is a painful process. Here are the steps:
- Download the correct tar/zip file matching your cuda version. Do not download the exe/installer/deb package.
- Windows:
- download this file.
- Extract the downloaded file and copy files to
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
using an administrative command prompt as followscd .\extracted_folder cd include copy *.h "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include\" cd ..\lib copy *.lib "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64\" cd ..\bin copy *.dll "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin\"
- Linux:
- download this file
- extract the files
xz -d cudnn-linux-x86_64-8.3.2.44_cuda10.2-archive.tar.xz tar xvf cudnn-linux-x86_64-8.3.2.44_cuda10.2-archive.tar
- copy files retaining the links
cd ./cudnn-linux-x86_64-8.3.2.44_cuda10.2-archive sudo cp -P include/* /usr/local/cuda/include/ sudo cp -P lib/* /usr/local/cuda/lib64/
- Install Visual Studio 2019 Community
- Install Desktop development C++
- .NET Desktop development
- Universal Windows Development Platform
- Install choco:
Open Windows PowerShell as Administrator and run:
Set-ExecutionPolicy AllSigned Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))
- Install build dependencies using choco:
choco feature enable -n allowEmptyChecksums && choco install 7zip git python3 cmake pkgconfiglite -y && pip3 install ninja && pip3 install meson
- Clone with submodules and LFS.
git clone --recursive https://github.com/Apra-Labs/ApraPipes.git
- Build libmp4
cd thirdparty\libmp4 .\build.cmd
- Note As of this revision, there is no need to build thirdparty\gstreamer for windows as we leverage vcpkg for the same.
If your windows machies does not have an NVIDIA GPU use this script
build_windows_no_cuda.bat
build_windows_cuda.bat
- list all tests
_build/BUILD_TYPE/aprapipesut.exe --list_content
- run all tests
_build/BUILD_TYPE/aprapipesut.exe
- run all tests disabling memory leak dumps and better progress logging
_build/BUILD_TYPE/aprapipesut.exe -p -l all --detect_memory_leaks=0
- run one test
_build/BUILD_TYPE/aprapipesut.exe --run_test=filenamestrategy_tests/boostdirectorystrategy
- run one test with arguments
_build/BUILD_TYPE/aprapipesut.exe --run_test=unit_tests/params_test -- -ip 10.102.10.121 -data ArgusCamera
- Look at the unit_tests/params_test to check for sample usage of parameters in test code
- Run the following to get latest build tools
sudo apt-get update && sudo apt-get -y install autoconf automake autopoint build-essential git-core git-lfs libass-dev libfreetype6-dev libgnutls28-dev libmp3lame-dev libsdl2-dev libtool libsoup-gnome2.4-dev libncurses5-dev libva-dev libvdpau-dev libvorbis-dev libxcb1-dev libxcb-shm0-dev libxcb-xfixes0-dev ninja-build pkg-config texinfo wget yasm zlib1g-dev nasm gperf bison curl zip unzip tar python3-pip flex && pip3 install meson
- Note: start a new terminal as pip3 settings do not get effective on the same shell
- CMake minimum version 3.24 - Follow this article to update cmake
- Clone with submodules and LFS.
git clone --recursive https://github.com/Apra-Labs/ApraPipes.git
- build gstreamer
cd thirdparty && sh ./build_gstreamer.sh && cd -
- update .bashrc and append following line at the end of it. Adjust the path based on your environment.
export LD_LIBRARY_PATH=~/ApraPipes/thirdparty/gst-build/gst-build-1.16/outInstall/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
- load symbols from .bashrc
source ~/.bashrc
.
chmod +x build_linux_*.sh
./build_linux_x64.sh
or./build_linux_no_cuda.sh
depending on previous step. No Cuda as the name suggests will not build the Nvidia Cuda GPU Modules. Use this if there is no nvidia GPU present on your host
Build can take ~2 hours depending on the machine configuration.
- Use this docker image with all the software setup.
docker pull ghcr.io/kumaakh/aprapipes-build-x86-ubutu18.04-cuda:latest
- Run the docker container using above image
- Mount an external volume as a build area
- clone the repository with submodules and LFS as described above
- build using build_linux_*.sh scripts as described above
This build will be fairly fast (~10 mins) as entire vcpkg cache comes down with the docker image
- Setup the board with Jetpack 4.4
- run the following
sudo apt-get update && sudo apt-get -y install git-lfs libncurses5-dev ninja-build nasm curl libudev-dev && sudo snap install cmake --classic
- append following lines to ~/.bashrc
export VCPKG_FORCE_SYSTEM_BINARIES=1 export PATH=/usr/local/cuda/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
- reload ~/.bashrc:
source ~/.bashrc:
- Clone with submodules and LFS.
git clone --recursive https://github.com/Apra-Labs/ApraPipes.git
- Run
./bootstrap-vcpkg.sh
in vcpkg/ directory - Run
./vcpkg integrate install
chmod +x build_jetson.sh
./build_jetson.sh
Build can take ~12 hours on Jetson Nano. Note: Jetson build can also be done using Ubuntu 18.04 x86_64 Laptop via cross compilation.
Conceptual steps adapted from here:
- On any Intel Ubuntu 18.04 computer (physical or virtual including wsl ) mount a Jetson SD Card Image as described above
- Copy relevant files from mounted image to created a rootfs
- Install qemu on ubuntu host
- chroot into emulated aarm64 environment using script provided in the github link above
- install extra tools and build aprapipes and aprapipesut
- the built aprapipesut can be copied to a Jetson board and run.
This approach can use all 12-16 cores of a laptop and hence builds faster.
- list all tests
_build/aprapipesut --list_content
- run all tests
_build/aprapipesut
- run one test
_build/aprapipesut --run_test=filenamestrategy_tests/boostdirectorystrategy
- run one test with arguments
_build/aprapipesut --run_test=unit_tests/params_test -- -ip 10.102.10.121 -data ArgusCamera
- Look at the unit_tests/params_test to check for sample usage of parameters in test code
This project uses boost tests for unit tests.
git submodule update --init --recursive
If any changes are made in the documentation i.e. in /docs/source folder, the docs must be regenerated again follwing the steps given below. New contents from the /docs/build directory should be committed.
To build docs
apt-install get python-sphinx
pip install sphinx-rtd-theme
cd docs
make html