SADN: Learned Light Field Image Compression with Spatial-Angular Decorrelation + QVRF: A Quantization-error-aware variable rate framework for learned image compression
Pytorch implementation of the paper "SADN: Learned Light Field Image Compression with Spatial-Angular Decorrelation" with variable rate techniche of "QVRF: A Quantization-error-aware variable rate framework for learned image compression"
- CompressAI: https://github.com/InterDigitalInc/CompressAI
- SADN:https://github.com/VincentChandelier/SADN
- QVRF:https://github.com/bytedance/QRAF
Install CompressAI and the packages required for development.
conda create -n SADN+QVRF python=3.9
conda activate FPIcompress
pip install compressai==1.1.5
pip install ptflops
pip install einops
pip install tensorboardX
Train a high-rate fixed-rate model.
python train.py -d dataset --N 48 --angRes 13 --n_blocks 1 -e 100 -lr 1e-4 -n 20 --lambda 3e-3 --batch-size 8 --test-batch-size 8 --aux-learning-rate 1e-3 --patch-size 832 832 --cuda --save --seed 1926 --clip_max_norm 1.0 --gpu-id 2,3 --savepath ./checkpoint --stage 1 --ste 0 --loadFromPretrainedSinglemodel 0
Load the last checkpoint of stage 1 or load from the Fixed-rate model of SADN and begin to train the variabal rate model in stage 2.
python train.py -d dataset --N 48 --angRes 13 --n_blocks 1 -e 100 -lr 1e-4 -n 20 --lambda 3e-3 --batch-size 8 --test-batch-size 8 --aux-learning-rate 1e-3 --patch-size 832 832 --cuda --save --seed 1926 --clip_max_norm 1.0 --gpu-id 2,3 --savepath ./Noisecheckpoint --stage 2 --ste 0 --loadFromPretrainedSinglemodel 1 --checkpoint checkpoint.pth.tar --pretrained
Load the last checkpoint of stage 2 and begin to train the final variabal rate model in stage 3.
python train.py -d dataset --N 48 --angRes 13 --n_blocks 1 -e 100 -lr 1e-6 -n 20 --lambda 3e-3 --batch-size 8 --test-batch-size 32 --aux-learning-rate 1e-3 --patch-size 832 832 --cuda --save --seed 1926 --clip_max_norm 1.0 --gpu-id 2,3 --savepath ./STEcheckpoint --stage 3 --ste 1 --loadFromPretrainedSinglemodel 0 --checkpoint ./Noisecheckpoint/checkpoint_best_loss_82.pth.tar --pretrained
python3 Inference.py --dataset ./dataset/Fulltest --s 2 --output_path SADNSTE -p ./Proposed_STE__28_checkpoint.pth.tar --patch 832 --factormode 0 --factor 0.1
If you have any problem, please contact me: tkd20@mails.tsinghua.edu.cn
If you think it is useful for your reseach, please cite our paper.
@inproceedings{tong2022sadn,
title={SADN: learned light field image compression with spatial-angular decorrelation},
author={Tong, Kedeng and Jin, Xin and Wang, Chen and Jiang, Fan},
booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={1870--1874},
year={2022},
organization={IEEE}
}
@article{tong2023qvrf,
title={QVRF: A Quantization-error-aware Variable Rate Framework for Learned Image Compression},
author={Tong, Kedeng and Wu, Yaojun and Li, Yue and Zhang, Kai and Zhang, Li and Jin, Xin},
journal={arXiv preprint arXiv:2303.05744},
year={2023}
}