/RCH

Primary LanguagePython

RCH

code for our paper "Renovate Yourself: Calibrating Feature Representation of Misclassified Pixels for Semantic Segmentation"
the corresponding article

PipleLine of RCH

image

Results

Network Encoder Iteration Train Test \rho \tau mIoU(log) pth comments
OCRNet HRNet-W48 40000 train set val set 0.9 0.5 82.24 pth
OCRNet HRNet-W48 40000 train set val set 0.9 0.5 82.29 pth Reproduced
OCRNet HRNet-W48 40000 train set val set 0.8 0.5 82.25 _
OCRNet HRNet-W48 40000 train set val set 0.9 0.25 81.88 _
FCN HRNet-W48 40000 train set val set 0.9 0.25 81.83 pth

Requirements

python>=3.6
torch>=1.7
torchvision
visdom
numpy
pillow
scikit-learn
For the GPUs, we use 8 NVIDIA TITAN X(P) GPUs.

Usage

  • core code of RCH is ./mmseg/models/decode_heads/decode_head_new.py
  • Please replace your dataset dir into the corresponding config file.
  • train OCRNet on cityscapes:

./tools/dist_train.sh ./configs/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes.py 8

Now, you can use RCH to train OCRNet, FCN, DeepLab. We will continue to update more available decoders。

Citation

@InProceedings{wang2021rch,
tilte = {Renovate Yourself: Calibrating Feature Representation of Misclassified Pixels for Semantic Segmentation},
author = {Wang, Hualiang and Chu, Huanpeng and Fu, siming},
booktitle = {AAAI},
year = {2022}
}