/approx-queueing-theory

Approximations to the Erlang C queue length formula for M/M/n queues

Primary LanguageGo

Approximate Queue Length Calculations.

Approximations to the Erlang C queue length formula for M/M/n queues.

This program computes queue lengths for M/M/n queues with the Erlang C formula, and two approximations, one discovered by Sakasegawa (1977) and one documented, but not discovered, by Neil Gunther in Analyzing Computer System Performance With Perl::PDQ.

Here are the results:

servers	util	erlang	gunther	sakasegawa
1	0.000	0.000000	0.000000	0.000000
1	0.100	0.011111	0.011111	0.011111
1	0.200	0.050000	0.050000	0.050000
1	0.300	0.128571	0.128571	0.128571
1	0.400	0.266667	0.266667	0.266667
1	0.500	0.500000	0.500000	0.500000
1	0.600	0.900000	0.900000	0.900000
1	0.700	1.633333	1.633333	1.633333
1	0.800	3.200000	3.200000	3.200000
1	0.900	8.100000	8.100000	8.100000
1	0.990	98.010000	98.010000	98.010000
1	0.999	998.001000	998.001000	998.001000
2	0.000	0.000000	0.000000	0.000000
2	0.100	0.002020	0.002020	0.003947
2	0.200	0.016667	0.016667	0.024254
2	0.300	0.059341	0.059341	0.074837
2	0.400	0.152381	0.152381	0.176644
2	0.500	0.333333	0.333333	0.366151
2	0.600	0.675000	0.675000	0.715359
2	0.700	1.345098	1.345098	1.391387
2	0.800	2.844444	2.844444	2.894609
2	0.900	7.673684	7.673684	7.725338
2	0.990	97.517487	97.517487	97.568236
2	0.999	997.501750	997.501750	997.552285
4	0.000	0.000000	0.000000	0.000000
4	0.100	0.000088	0.000040	0.000765
4	0.200	0.002395	0.001282	0.007701
4	0.300	0.015878	0.009799	0.031726
4	0.400	0.060466	0.042036	0.091929
4	0.500	0.173913	0.133333	0.223403
4	0.600	0.430565	0.357353	0.497042
4	0.700	1.000193	0.884695	1.079036
4	0.800	2.385730	2.220054	2.468958
4	0.900	7.089779	6.868159	7.166418
4	0.990	96.812612	96.537437	96.871779
4	0.999	996.784391	996.503749	996.841140
8	0.000	0.000000	0.000000	0.000000
8	0.100	0.000000	0.000000	0.000064
8	0.200	0.000067	0.000004	0.001353
8	0.300	0.001516	0.000157	0.008640
8	0.400	0.012330	0.002099	0.034161
8	0.500	0.059044	0.015686	0.105650
8	0.600	0.209313	0.081999	0.286230
8	0.700	0.631407	0.342578	0.733982
8	0.800	1.830580	1.290202	1.940062
8	0.900	6.313797	5.441941	6.395396
8	0.990	95.812556	94.597231	95.825633
8	0.999	995.760755	994.509747	995.764233
16	0.000	0.000000	0.000000	0.000000
16	0.100	0.000000	0.000000	0.000002
16	0.200	0.000000	0.000000	0.000105
16	0.300	0.000019	0.000000	0.001277
16	0.400	0.000699	0.000003	0.007970
16	0.500	0.009019	0.000122	0.035135
16	0.600	0.062801	0.002709	0.127160
16	0.700	0.302577	0.037345	0.416536
16	0.800	1.219536	0.370723	1.361107
16	0.900	5.322091	3.275262	5.409913
16	0.990	94.403548	90.796343	94.308107
16	0.999	994.306571	990.529739	994.183115
32	0.000	0.000000	0.000000	0.000000
32	0.100	0.000000	0.000000	0.000000
32	0.200	0.000000	0.000000	0.000003
32	0.300	0.000000	0.000000	0.000081
32	0.400	0.000003	0.000000	0.000975
32	0.500	0.000291	0.000000	0.007169
32	0.600	0.007601	0.000002	0.039412
32	0.700	0.088712	0.000247	0.183844
32	0.800	0.642493	0.020298	0.815961
32	0.900	4.123770	1.024064	4.248781
32	0.990	92.431001	83.511763	92.159509
32	0.999	992.246601	982.601706	991.904841
64	0.000	0.000000	0.000000	0.000000
64	0.100	0.000000	0.000000	0.000000
64	0.200	0.000000	0.000000	0.000000
64	0.300	0.000000	0.000000	0.000002
64	0.400	0.000000	0.000000	0.000048
64	0.500	0.000000	0.000000	0.000739
64	0.600	0.000155	0.000000	0.007387
64	0.700	0.010296	0.000000	0.057112
64	0.800	0.224226	0.000032	0.392668
64	0.900	2.795970	0.067992	3.008045
64	0.990	89.688778	70.197190	89.173038
64	0.999	989.334082	966.873556	988.657359