These scripts are used for convert datasets (MS COCO, Caltech pedestrian dataset) to PASCAL VOC format for later training.
- Python3.X
- MS COCO toolbox
- cytoolz
- pathos
- lmxl
- scipy, numpy
anno_json_image_urls.py
: extract image url (coco source not filckr) from annotation json file. See anno_json_image_urls.sh
download_coco_images.py
: download coco image files from given urls (extracted from instance/keypoint annotation json file) . See download.sh
anno_coco2voc.py
: convert coco annotation json file to VOC xml files. See anno_coco2voc.sh
For exmaple:
python3 anno_coco2voc.py --anno_file=/Path/to/instances_train2014.json \
--type=instance \
--output_dir=/Path/to/instance_anno_dir
vbb2voc.py
: extract images with person bbox in seq file and convert vbb annotation file to xml files.
PS: For Caltech pedestrian dataset, there are 4 kind of persons: person
, person-fa
, person?
, people
.
In my case, I just need to use person
type data. If you want to use other types, specify person_types
with
corresponding type list (like ['person', 'people']
) in parse_anno_file
function.
python3 vbb2voc.py --seq_dir=path/to/caltech/seq/dir \
--vbb_dir=path/to/caltech/vbb/dir \
--output_dir=/output/saving/path \
--person_type=person
anno_had2voc
: convert HDA annotation info to VOC format.
python3 anno_hda2voc.py --input_dir=path/to/HDA_Dataset_V1.3/hda_detections/GtAnnotationsAll \
--output_dir=anno/saving/path