The implementation of Cross-Domain Image-Based 3D Shape Retrieval by View Sequence Learning.
Lee, Tang, et al. "Cross-Domain Image-Based 3D Shape Retrieval by View Sequence Learning." 2018 International Conference on 3D Vision (3DV). IEEE, 2018.
Files descriptions:
- globals.py: experiment configs.
- input.py: a small lib to load image / 3D shape files.
- run_eval_exp.sh: script for running experiments.
- Download dataset here.
- unzip it into the repository directory.
unzip IM2MN.zip
mkdir tmp
Prepare pretrained model:
./prepare_pretrained_alexnet.sh
train with pretrained model:
python train.py --caffemodel ./alexnet_imagenet.npy --train_dir tmp --learning_rate 0.01
fine-tune with checkpoint file:
python train.py --weights tmp/model.ckpt-10000 --train_dir tmp --learning_rate 0.01
PHASE=val CKPTITER=15000 GPU=1 ./run_eval_exp.sh
This scripts does 4 steps for testing:
- extract features of images and 3D shapes. Save them into hkl files.
- retrieve. The results are saved into hkl files.
- evaluate. Print mAP.
- gen_retrievis.py. Generate result files for RetrieVis visualization.
git clone https://github.com/WeiTang114/RetrieVis
cd RetrieVis/
python simple.py <ibsr-triplet>/tmp/visresult/result.test.pool5.15000 --port <port>
Connect to http://<ip>:<port> to see the results。