-
CUDA>=10.0
-
At least four 1080-Ti GPUs
-
Training Data
The model is trained and evaluated on Market-1501, DukeMTMC-reID, MSMT17_V1, CUHK03, CUHK-SYSU.
Unzip all datasets and ensure the file structure is as follow:
data │ └─── market1501 / dukemtmc / cuhk03 / msmt17v1 / cuhk_sysu │ └─── Market-1501-v15.09.15 / DukeMTMC-reID / cuhk03_release / MSMT17_V1 / CUHK-SYSU
ARCH=resnet50
SRC1/SRC2/SRC3=market1501/dukemtmc/cuhk03/msmt17v1/cuhk_sysu
TARGET=market1501/dukemtmc/cuhk03/msmt17v1
# train baseline
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py \
-a resnet50 -b 64 --test-batch-size 256 --iters 200 --lr 3.5e-4 --epoch 70 \
--dataset_src1 msmt17v1 --dataset_src2 cuhk03 --dataset_src3 market1501 -d dukemtmc \
--logs-dir logs/Baseline \
--data-dir DATA_PATH
# train IL
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py \
-a resnet50 -b 64 --test-batch-size 256 --iters 200 --lr 3.5e-4 --epoch 70 \
--dataset_src1 msmt17v1 --dataset_src2 cuhk03 --dataset_src3 market1501 -d dukemtmc \
--logs-dir logs/IL \
--updateStyle \
--data-dir DATA_PATH
Note:
(1) The baseline setting in this code can be denoted as 'FBF' baseline, which is different with the reported 'FB' baseline in the paper. But they are similar in performance:
------------------------------------------------------------
|Baseline|→M |→D |→MS |→C3 |Avg |
|FB |59.3/81.2|54.3/70.9|14.7/35.2|36.1/37.4|41.1/56.2|
|FBF |59.7/81.5|53.6/73.0|13.7/33.4|35.3/35.9|40.6/56.0|
------------------------------------------------------------
(2) Just simply set '--updateStyle' can activate the interleaved learning.
This repo borrows partially from M3L.
@article{tan2023style,
title={Style Interleaved Learning for Generalizable Person Re-identification},
author={Tan, Wentao and Ding, Changxing and Wang, Pengfei and Gong, Mingming and Jia, Kui},
journal={IEEE Transactions on Multimedia},
year={2023},
publisher={IEEE},
doi={10.1109/TMM.2023.3283878}
}
Email: ftwentaotan@mail.scut.edu.cn or 731584671@qq.com
如果可以当然还是希望用中文contact我啦!