AutoSched

Auto Learning and Multi-task Scheduling Framework for Heterogeneous Many-core Processors and Supercomputers


  1. util/ -> mpi and communcation lib
  2. master.c -> MPE control
  3. slave.c -> CPE execution

Done List:

  1. Parallel K-Means Clustering Algorithm with Multi-level Data-Partitioning /Liandeng Li - 2018

TODO list:

  1. Evulation/Metric Functions for Parameters Auto-learning
  2. Multi-task Resource Allocator
  3. Runtime Threads Scheduler
  4. Experimental Evaluation on Real Applications: Remote Sensing, Gene Expression.

Collaborators:

University of St Andrews:

  1. Teng Yu
  2. Dr. John Thomson

Tsinghua University/National Supercomputer Centre in Wuxi:

  1. Dr. Wenlai Zhao
  2. Prof. Haohuan Fu
  3. Liandeng Li
  4. Pan Liu

Sanger Institute:

  1. Dr. Shicai Wang

Publications:

  1. [SC18] Large-Scale Hierarchical K-means for Heterogeneous Many-core Supercomputers