/parking-forecast

Parking forecasting pipeline for prediction of available parking spaces

Primary LanguageJupyter Notebook

Parking forecasting

Parking forecasting pipeline for prediction of available parking spaces

To use with docker

docker build -t forecast .
docker run --name parking -d forecast
docker logs -f [Container ID]

File Structure

├── .gitignore                <- Files that should be ignored by git. Add seperate .gitignore files in sub folders if
│                                needed
|
├── LICENSE
|
├── README.md                 <- The top-level README for developers using this project.
|
├── setup.py                  <- Metadata about your project for easy distribution.
│
├── requirements.txt          <- The requirements file for reproducing the analysis environments
│                              
├── conda_env.yml             <- Conda environment definition for ensuring consistent setup across environments
|
├── logs                      <- ML model logs
|
├── data
│   ├── interim_[desc]        <- Interim files - give these folders whatever name makes sense.
│   ├── processed             <- The final, canonical data sets for modeling.
│   ├── raw                   <- The original, immutable data dump.
│   ├── temp                  <- Temporary files.
│   └── training              <- Files relating to the training process
│
│
├── src                       <- Code for use in this project.
│   └── PMV4Cast              <- Example python package - place shared code in such a package
│       ├── __init__.py       <- Python package initialisation
│       ├── examplemodule.py  <- Example module with functions and naming / commenting best practices
│       ├── features.py       <- Feature engineering functionality
│       ├── io_data.py        <- IO functionality
│       ├── ml_model.py       <- Machine learning model
│       ├── simple_average.py <- Baseline average forecasting model (next day with 10 min resolution)
│       └── pipeline.py       <- Pipeline functionality
│
└── tests                     <- Test cases (named after module)
    └── PMV4Cast              <- PMV4Cast tests
        ├── examplemodule     <- examplemodule tests (1 file per method tested)
        ├── features          <- features tests
        ├── io                <- io tests
        └── pipeline          <- pipeline tests