/DCD

Detecting and counting things in images using deep learning.

MIT LicenseMIT

DCD

Detecting and counting things in images using deep learning.

The goal of this project is to explore various ways of detecting and counting using the MNIST dataset.

  1. Mosaics (n x n x 1):
  • Example 1: detection (multi-label classification) mosaic_size=(2 x 2) input_shape=(bs,56,56,1) -> output_shape=(bs,10)
  • Example 2: counting mosaic_size=(2 x 2) input_shape=(bs,56,56,1) -> output_shape=(bs,1)
  1. Channel-wise stacking (1 x 1 x m):
  • Example 1: detection (multi-label classification) n_channels=5 input_shape=(bs,28,28,5) -> output_shape=(bs,5)
  • Example 2: counting n_channels=5 input_shape=(bs,28,28,5) -> output_shape=(bs,1)