Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming
Wojciech Kozłowski, Michał Szachniewicz, Michał Stypułkowski, Maciej Zięba
We propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs to replicate scenes captured under extreme lighting conditions taken by that specific camera. Dimma is the perfect solution for swiftly crafting a customized low-light image enhancement model for your camera, all without requiring an extensive collection of image pairs.
Method | PSNR ↑ | SSIM ↑ | RGB-SSIM ↑ | LPIPS ↓ | DeltaE ↓ | NIQE ↓ |
---|---|---|---|---|---|---|
SNR-Net | 19.43 | 0.78 | 0.75 | 0.42 | 9.59 | 4.61 |
LLFlow | 19.46 | 0.81 | 0.79 | 0.35 | 9.69 | 3.50 |
Dimma (ours) | 24.14 | 0.83 | 0.81 | 0.27 | 6.14 | 2.93 |
Method | PSNR ↑ | SSIM ↑ | RGB-SSIM ↑ | LPIPS ↓ | DeltaE ↓ | NIQE ↓ | Train pairs ↓ |
---|---|---|---|---|---|---|---|
KinD++ | 21.80 | 0.88 | 0.83 | 0.16 | 8.50 | 4.00 | 460 |
SNR-Net | 24.61 | 0.90 | 0.84 | 0.15 | 6.85 | 4.02 | 485 |
LLFlow | 25.19 | 0.93 | 0.86 | 0.11 | 6.40 | 4.08 | 485 |
Dimma 3 pairs | 23.54 | 0.83 | 0.76 | 0.26 | 9.20 | 3.93 | 3 |
Dimma 5 pairs | 24.49 | 0.84 | 0.76 | 0.25 | 7.98 | 3.81 | 5 |
Dimma 8 pairs | 24.70 | 0.86 | 0.78 | 0.23 | 7.81 | 3.56 | 8 |
Dimma full | 27.39 | 0.91 | 0.86 | 0.11 | 5.54 | 3.14 | 480 |
To run this code install requirements
pip install -r requirements.txt
and run the following commands:
python train_unsupervised.py --config="configs/LOL/stage1/3shot-lol.yaml"
python finetune.py --config="configs/LOL/stage2/3shot-lol-ft.yaml"
For different config file use --config flag. There are many configs in config folder.
Please, bear in mind that you need to first train unsupervised model before running finetune.py. Data and models are not included in this repository. You can get them from the following link: drive.
If you find our work useful for your research, please cite our paper
@article{kozlowski2023dimma,
title={Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming},
author={Koz{\l}owski, Wojciech and Szachniewicz, Micha{\l} and Stypu{\l}kowski, Micha{\l} and Zi{\k{e}}ba, Maciej},
journal={arXiv preprint arXiv:2310.09633},
year={2023}
}