/Dimma

Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming

Primary LanguagePythonMIT LicenseMIT

Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming

Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming

Wojciech Kozłowski, Michał Szachniewicz, Michał Stypułkowski, Maciej Zięba

Abstract

Visual Abstract We propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs to replicate scenes captured under extreme lighting conditions taken by that specific camera. Dimma is the perfect solution for swiftly crafting a customized low-light image enhancement model for your camera, all without requiring an extensive collection of image pairs.

Results

Few-shot Dark

Few-shot Dark comparison

Method PSNR ↑ SSIM ↑ RGB-SSIM ↑ LPIPS ↓ DeltaE ↓ NIQE ↓
SNR-Net 19.43 0.78 0.75 0.42 9.59 4.61
LLFlow 19.46 0.81 0.79 0.35 9.69 3.50
Dimma (ours) 24.14 0.83 0.81 0.27 6.14 2.93

LOL

LOL comparison

Method PSNR ↑ SSIM ↑ RGB-SSIM ↑ LPIPS ↓ DeltaE ↓ NIQE ↓ Train pairs ↓
KinD++ 21.80 0.88 0.83 0.16 8.50 4.00 460
SNR-Net 24.61 0.90 0.84 0.15 6.85 4.02 485
LLFlow 25.19 0.93 0.86 0.11 6.40 4.08 485
Dimma 3 pairs 23.54 0.83 0.76 0.26 9.20 3.93 3
Dimma 5 pairs 24.49 0.84 0.76 0.25 7.98 3.81 5
Dimma 8 pairs 24.70 0.86 0.78 0.23 7.81 3.56 8
Dimma full 27.39 0.91 0.86 0.11 5.54 3.14 480

Run the code

To run this code install requirements

pip install -r requirements.txt

and run the following commands:

python train_unsupervised.py --config="configs/LOL/stage1/3shot-lol.yaml"
python finetune.py --config="configs/LOL/stage2/3shot-lol-ft.yaml"

For different config file use --config flag. There are many configs in config folder.

Please, bear in mind that you need to first train unsupervised model before running finetune.py. Data and models are not included in this repository. You can get them from the following link: drive.

Citation

If you find our work useful for your research, please cite our paper

@article{kozlowski2023dimma,
  title={Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming},
  author={Koz{\l}owski, Wojciech and Szachniewicz, Micha{\l} and Stypu{\l}kowski, Micha{\l} and Zi{\k{e}}ba, Maciej},
  journal={arXiv preprint arXiv:2310.09633},
  year={2023}
}