/DanishFungiDataset

Primary LanguageJupyter NotebookBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

PWC

PWC

News

  • Metrics slightly updated! Retrained with PyTorch NGC Docker Container 20.07 and on Ampere GPUs only (3080 / 3090)
  • EXIF metadata available! You can read it dirrectly from the images.

Danish Fungi 2020 - Not Just Another Image Recognition Dataset

By Lukas Picek et al. MAIL

Introduction

Supplementary material to: Danish Fungi 2020 - Not Just Another Image Recognition Dataset

In order to support research in fine-grained plant classification and to allow full reproducibility of our results, we share the Training Logs and Trained scripts.

  • The Images, Checkpoints and Metadata are not included based on size constrains and will be published after the review.

Training Data

Available at -> https://sites.google.com/view/danish-fungi-dataset

Training

  1. Download PyTorch NGC Docker Image and RUN docker container
docker pull nvcr.io/nvidia/pytorch:21.07-py3
docker run --gpus all -it --rm -v local_dir:container_dir nvcr.io/nvidia/pytorch:21.07-py3
  1. Install dependencies inside docker container
pip install pandas seaborn timm albumentation tqdm efficientnet_pytorch pretrainedmodels
  1. RUN jupyterlab and start training / experiments
jupyter lab --ip 0.0.0.0 --port 8888 --allow-root
  • Check your paths!

Results

CNN Performance Evaluation

Classification performance of selected CNN architectures on DF20 and DF20 - Mini. All networks share the settings described in Section 6.1 and were trained on 299Γ—299 images.

Top1 [%] Top3 [%] F1 Top1 [%] Top3 [%] F1
MobileNet-V2 65.58 83.65 0.559 69.77 85.01 0.606
ResNet-18 62.91 81.65 0.514 67.13 82.65 0.580
ResNet-34 65.63 83.52 0.559 69.81 84.76 0.600
ResNet-50 68.39 85.22 0.587 73.49 87.13 0.649
EfficientNet-B0 67.94 85.71 0.567 73.65 87.55 0.653
EfficientNet-B1 68.35 84.67 0.572 74.08 87.68 0.654
EfficientNet-B3 69.59 85.55 0.590 75.69 88.72 0.673
EfficientNet-B5 68.76 85.00 0.579 76.10 88.85 0.678
Inception-V3 65.91 82.97 0.535 72.10 86.58 0.630
InceptionResnet-V2 64.67 81.42 0.542 74.01 87.49 0.651
Inception-V4 67.45 82.78 0.560 73.00 86.87 0.637
SE-ResNeXt-101-32x4d 72.23 87.28 0.620 77.13 89.48 0.693
---------------- ---- ---- ---- ---- ---- ----
Dataset DF20M DF20M DF20M DF20 DF20 DF20

ViT x CNN Performance Evaluation

Classification results of selected CNN and ViT architectures on DF20 and DF20,-,Mini dataset for two input resolutions [299𐄂299, 384𐄂384].

Top1 [%] Top3 [%] F1 Top1 [%] Top3 [%] F1
EfficientNet-B0 65.66 83.35 0.531 70.33 85.19 0.613
EfficientNet-B3 67.39 83.74 0.550 72.51 86.77 0.634
SE-ResNeXt-101 68.87 85.14 0.585 74.26 87.78 0.660
ViT-Base/16 70.11 86.81 0.600 73.51 87.55 0.655
ViT-Large/16 71.04 86.15 0.603 75.29 88.34 0.675
---------------- ---- ---- ---- ---- ---- ----
Dataset DF20M DF20M DF20M DF20 DF20 DF20
Top1 [%] Top3 [%] F1 Top1 [%] Top3 [%] F1
EfficientNet-B0 69.62 85.96 0.582 75.35 88.67 0.670
EfficientNet-B3 71.59 87.39 0.613 77.59 90.07 0.699
SE-ResNeXt-101 74.23 88.27 0.651 78.72 90.54 0.708
ViT-Base/16 74.23 89.12 0.639 79.48 90.95 0.727
ViT-Large/16 75.85 89.95 0.669 80.45 91.68 0.743
---------------- ---- ---- ---- ---- ---- ----
Dataset DF20M DF20M DF20M DF20 DF20 DF20

Metadata Usage Experiment

Performance gains from Fungus observation metadata: H - Habitat, S - Substrate, M - Month, and their combinations, on DF20.

DF20 - ViT-Large/16 with image size 384𐄂384.

H M S Top1 [%] Top3 [%] F1
𐄂 𐄂 𐄂 80.45 91.68 0.743
βœ” 𐄂 𐄂 +1.50 +1.00 +0.027
𐄂 βœ” 𐄂 +0.95 +0.62 +0.014
𐄂 𐄂 βœ” +1.13 +0.69 +0.020
𐄂 βœ” βœ” +1.93 +1.27 +0.032
βœ” 𐄂 βœ” +2.48 +1.66 +0.044
βœ” βœ” 𐄂 +2.31 +1.48 +0.040
βœ” βœ” βœ” +2.95 +1.92 +0.053

DF20-Mini - ViT-Base/16 with image size 224𐄂224.

H M S Top1 Top3 F1
𐄂 𐄂 𐄂 73.51 87.55 0.655
βœ” 𐄂 𐄂 +1.94 +1.50 +0.040
𐄂 βœ” 𐄂 +1.23 +0.95 +0.020
𐄂 𐄂 βœ” +1.39 +1.17 +0.025
𐄂 βœ” βœ” +2.47 +1.98 +0.042
βœ” 𐄂 βœ” +3.23 +2.47 +0.062
βœ” βœ” 𐄂 +3.11 +2.30 +0.057
βœ” βœ” βœ” +3.81 +2.84 +0.070

License

The code and dataset is released under the BSD License. There is some limitations for commercial usage. In other words, the training data, metadata, and models are available only for non-commercial research purposes only.

Citation

If you use Danish Fungi for your research or aplication, please consider citation:

@article{picek2021danish,
title={Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
author={LukÑő Picek and Milan Šulc and Jiří Matas and Jacob Heilmann-Clausen and Thomas S. Jeppesen and Thomas Læssøe and Tobias Frøslev},
year={2021},
eprint={2103.10107},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Contact

[Lukas Picek](lukaspicek@gmail.com, picekl@ntis.zcu.cz)