⭐ Real Time Fruit Detection
- Tomato
- Banana
- Blueberry
- Strawberry
- Corn
- Crimson-Golden Apple
- Lemon and Lime
- Avocado
- Cherry
- Raspberry
dataset i use; https://www.kaggle.com/moltean/fruits
you can increase the layers to make the model more accurate
model.add(Dense(units = 256,activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(units = 256,activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(units = 256,activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(units = 256,activation = 'relu'))
model.add(Dropout(0.2))
hist = model.fit_generator(dataGen.flow(x_train,y_train,batch_size=batch_size),
validation_data = (x_validation,
y_validation),
epochs = 60, <------------------
steps_per_epoch = x_train.shape[0]//batch_size,
shuffle = 1)
dataGen = ImageDataGenerator(width_shift_range = 0.1,
height_shift_range = 0.1,
zoom_range = 0.6, <-------
rotation_range = 10)
x_train, x_test, y_train, y_test = train_test_split(images,classNo,test_size = 0.2, <------ %80 percent for training
random_state = 42)