/RoleInteract

RoleInteract: Evaluating the Social Interaction of Role-Playing Agents

Primary LanguagePython

image

RoleInteract: Evaluating the Social Interaction of Role-Playing Agents

Hongzhan Chen1, Hehong Chen2, Ming Yan2*, Wenshen Xu2, Xing Gao2, Weizhou shen1, Xiaojun Quan1*, Chenliang Li2, Ji Zhang2, Fei Huang2, Jingren Zhou2
chenhzh59@mail2.sysu.edu.cn, ym119608@alibaba-inc.com, quanxj3@mail.sysu.edu.cn
1Sun Yat-sen University 2Alibaba Group
*Corresponding authors

Introduction

Large language models (LLMs) have advanced the development of role-playing agents that mimic diverse characters and human behaviors. While prior research has predominantly focused on enhancing the conversational capability, role-specific knowledge, and stylistic attributes of these agents, there has been a noticeable gap in assessing their social intelligence.

In this work, we introduce RoleInteract, the first benchmark designed to evaluate the sociality of role-playing agents, at both individual and group levels of social interactions. Some phenomenons are found ... as we dive into the society of role-playing conversational agents.

Evaluation Dimensions

The evaluation dimensions of RoleInteract include:

  • Individual Level
    • Self-Awareness on Role Description
      • Self-Awareness on Role Style (SA Style)
      • Self-Awareness on Role Knowledge (SA Know.)
    • Emotional Perception on Environment
      • Situational Understanding (EP Situ.)
      • Emotional Detection (EP Emo.)
    • Long-Term Conversation Memory
      • Conversation Memory Short-Term (CM Short)
      • Conversation Memory Long-Term (CM Long)
  • Group Level
    • Social Preference towards Group Dynamics
      • Positive Social Preference (SP Pos.)
      • Neutral Social Preference (SP Neu.)
      • Negative Social Preference (SP Neg.)

Statistics of RoleInteract

Personality Traits

From the collection of 638 personality descriptors created by Gunkel (1998), we select and extend diverse personality traits for RoleInteract's role profile construction.

image

Dialogue Tokens

There are a total of >500 roles, comprising >6,000 questions and >30,800 utterances in RoleInteract. We show the distribution of dialogue tokens as below:

image

Data Structure

RoleInteract is stored in JSON format, with the entire file being a list where each element is a dictionary. Each dictionary may contain the following fields:

  • dialogue (List[dict]): A record of dialogue history for roles, where each element is a dictionary. The key 'from' represents the speaking role, while 'value' represents the utterance.
  • instruction (str): Instruction for the current task.
  • choices (dict): The keys correspond to options (A, B, C, ...), and the values correspond to the content of each option.
  • label (List[str]): List of labels.
  • meta (dict): Additional auxiliary information for the current task, may contain the following fields:
    • lang (str): The current language, either Chinese (zh) or English (en).
    • name (str): Current role name.
    • profile (dict): A dictionary contains role profiles for current dialogue, where the key represents the role name, the value is the content of the corresponding role profile.
    • reference ([Optional] str): The reference for the current reply.
    • category (str): The category of the current evaluation dimension.

Evaluation Scripts

To evaluate closed-source LLMs, run following:

python evaluate_closed_source.py \
--model gpt-3.5 \
--json_file data/social_preference.json \
--save_dir log

Experimental Results

We utilize zero-shot prompting for all experiments, and only the chat version of the open-source LLMs are considered.

Open-Source LLMs

Model SA Style SA Know EP Situ. EP Emo. CM Short CM Long SP Pos. SP Neu. SP Neg. Avg
LLaMA-2-7B-Chat 48.76 51.23 31.23 28.91 25.38 21.89 44.98 24.19 27.67 33.80
LLaMA-2-13B-Chat 57.62 65.51 37.12 32.56 30.43 29.82 66.38 42.25 26.27 43.11
LLaMA-2-70B-Chat 67.61 70.78 35.74 38.47 45.57 26.74 69.87 45.29 39.37 48.83
Mistral-7B-Instruct-V0.2 50.12 61.17 36.48 31.72 31.78 25.42 65.67 46.34 28.96 41.96
Qwen-7B-Chat 66.44 71.16 41.68 40.68 67.45 53.45 75.61 52.78 43.11 56.93
Qwen-14B-Chat 77.06 86.15 45.71 43.78 65.32 51.37 78.32 58.25 59.21 62.80
Qwen-72B-Chat 83.87 90.64 53.10 52.89 83.29 73.15 91.53 73.44 63.82 73.97

Closed-Source LLMs

Model SA Style SA Know EP Situ. EP Emo. CM Short CM Long SP Pos. SP Neu. SP Neg. Avg
GPT-4-Turbo 84.57 93.11 56.48 53.05 81.39 80.11 89.73 81.69 75.10 77.25
GPT-3.5-Turbo 73.17 73.82 52.44 45.49 73.03 59.72 81.59 76.79 54.16 65.58
Qwen-Max 82.04 93.34 61.14 52.36 76.45 72.65 87.22 72.14 52.19 72.17
Xingchen-Plus 85.43 91.60 55.44 60.73 82.43 80.69 94.27 86.69 77.26 79.39
Baichuan-NPC-Turbo 53.69 61.67 52.14 43.34 76.47 22.40 62.09 48.97 34.59 50.59
Baichuan-2-Turbo 77.75 83.35 55.70 47.38 80.11 78.91 87.37 74.71 68.50 72.64
CharGLM-3 74.70 79.41 26.23 41.27 81.16 68.29 84.40 70.45 36.36 62.47
GLM-3-Turbo 77.85 84.62 35.58 53.05 74.64 71.68 84.41 67.47 54.55 67.09
Minimax-abab5.5s-chat 36.09 42.11 28.15 47.97 29.55 19.30 44.59 41.04 22.45 34.58
Minimax-abab6-chat 82.92 87.45 35.90 51.38 83.60 80.26 89.12 79.55 74.65 73.87

Citation

@misc{chen2024roleinteract,
      title={RoleInteract: Evaluating the Social Interaction of Role-Playing Agents}, 
      author={Hongzhan Chen and Hehong Chen and Ming Yan and Wenshen Xu and Xing Gao and Weizhou Shen and Xiaojun Quan and Chenliang Li and Ji Zhang and Fei Huang and Jingren Zhou},
      year={2024},
      eprint={2403.13679},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}