/MambaST

Primary LanguagePythonMIT LicenseMIT

MambaST

MambaST: A Plug-and-Play Cross-Spectral Spatial-Temporal Fuser for Efficient Pedestrian Detection

Usage

  1. Build Docker Image

    cd docker
    bash build.sh

    Note: Make sure to change USERNAME and USER_UID in the script.

  2. Run Docker Container

    cd ..
    bash docker/run.sh

    Note: Update your_username and path_to_project_directory accordingly.

  3. Install Third Party Libraries

    cd thirdparty/Vim
    pip install -e mamba-1p1p1
    cd ../..
    pip install causal-conv1d==1.1.0
  4. Download and Prepare Dataset

    • Download the KAIST-CVPR15 dataset from here and place it in your dataset directory.
    • Copy the dataset:
      cp -r ~/dataset/* path_to_your_dataset_directory
    • Copy the sanitized annotations format:
      cp sanitized_annotations_format_all path_to_your_dataset_directory
  5. Update Annotation Path

    • Modify KAIST_ANNOTATION_PATH in utils/datasets_vid.py to the absolute path of sanitized_annotations_format_all.
  6. Training

    bash train.sh

    Sample training code.

  7. Testing

    bash test.sh

Citation

If you found repo useful, feel free to cite.

@article{gao2024mambast,
  title={MambaST: A Plug-and-Play Cross-Spectral Spatial-Temporal Fuser for Efficient Pedestrian Detection},
  author={Gao, Xiangbo and Kanu-Asiegbu, Asiegbu Miracle and Du, Xiaoxiao},
  journal={arXiv preprint arXiv:2408.01037},
  year={2024}
}