Knee-point detection in Python
This repository is an attempt to implement the kneedle algorithm, published here. Given a set of x
and y
values, kneed
will return the knee point of the function. The knee point is the point of maximum curvature.
Tested with Python 3.5, 3.6, and 3.7
anaconda
$ conda install -c conda-forge kneed
pip
$ pip install kneed
Clone from GitHub
$ git clone https://github.com/arvkevi/kneed.git
$ python setup.py install
These steps introduce how to use kneed
by reproducing Figure 2 from the manuscript.
The DataGenerator
class is only included as a utility to generate sample datasets.
Note:
x
andy
must be equal length arrays.
from kneed import DataGenerator, KneeLocator
x, y = DataGenerator.figure2()
print([round(i, 3) for i in x])
print([round(i, 3) for i in y])
[0.0, 0.111, 0.222, 0.333, 0.444, 0.556, 0.667, 0.778, 0.889, 1.0]
[-5.0, 0.263, 1.897, 2.692, 3.163, 3.475, 3.696, 3.861, 3.989, 4.091]
The knee (or elbow) point is calculated simply by instantiating the KneeLocator
class with x
, y
and the appropriate curve
and direction
.
Here, kneedle.knee
and/or kneedle.elbow
store the point of maximum curvature.
kneedle = KneeLocator(x, y, S=1.0, curve='concave', direction='increasing')
print(round(kneedle.knee, 3))
0.222
print(round(kneedle.elbow, 3))
0.222
The knee point returned is a value along the x
axis. The y
value at the knee can be identified:
print(round(kneedle.knee_y, 3))
1.897
The KneeLocator
class also has two plotting functions for quick visualizations.
Note that all (x, y) are transformed for the normalized plots
# Normalized data, normalized knee, and normalized distance curve.
kneedle.plot_knee_normalized()
# Raw data and knee.
kneedle.plot_knee()
The knee point selected is tunable by setting the sensitivity parameter S. From the manuscript:
The sensitivity parameter allows us to adjust how aggressive we want Kneedle to be when detecting knees. Smaller values for S detect knees quicker, while larger values are more conservative. Put simply, S is a measure of how many “flat” points we expect to see in the unmodified data curve before declaring a knee.
import numpy as np
np.random.seed(23)
sensitivity = [1, 3, 5, 10, 100, 200, 400]
knees = []
norm_knees = []
n = 1000
x = range(1, n + 1)
y = sorted(np.random.gamma(0.5, 1.0, n), reverse=True)
for s in sensitivity:
kl = KneeLocator(x, y, curve='convex', direction='decreasing', S=s)
knees.append(kl.knee)
norm_knees.append(kl.norm_knee)
print(knees)
[43, 137, 178, 258, 305, 482, 482]
print([nk.round(2) for nk in norm_knees])
[0.04, 0.14, 0.18, 0.26, 0.3, 0.48, 0.48]
import matplotlib.pyplot as plt
plt.style.use('ggplot');
plt.figure(figsize=(8, 6));
plt.plot(kl.x_normalized, kl.y_normalized);
plt.plot(kl.x_distance, kl.y_distance);
colors = ['r', 'g', 'k', 'm', 'c', 'orange']
for k, c, s in zip(norm_knees, colors, sensitivity):
plt.vlines(k, 0, 1, linestyles='--', colors=c, label=f'S = {s}');
plt.legend();
Notice that any S>200 will result in a knee at 482 (0.48, normalized) in the plot above.
The knee point can be corrected if the parameter online
is True
(default). This mode will step through each element in
x
. In contrast, if online
is False
, kneed will run in offline mode and return the first knee point identified.
Using the x
and y
from the Sensitivity example above, this time, let's keep S=1
but modify online
.
kl_online = KneeLocator(x, y, curve='convex', direction='decreasing', online=True)
kl_offline = KneeLocator(x, y, curve='convex', direction='decreasing', online=False)
import matplotlib.pyplot as plt
plt.style.use('ggplot');
plt.figure(figsize=(8, 6));
plt.plot(kl_online.x_normalized, kl_online.y_normalized);
plt.plot(kl_online.x_distance, kl_online.y_distance);
colors = ['r', 'g']
for k, c, o in zip([kl_online.norm_knee, kl_offline.norm_knee], ['r', 'g'], ['online', 'offline']):
plt.vlines(k, 0, 1, linestyles='--', colors=c, label=o);
plt.legend();
Here is an example of a "bumpy" or "noisy" line where the default scipy.interpolate.interp1d
spline fitting method does not provide the best estimate for the point of maximum curvature.
This example demonstrates that setting the parameter interp_method='polynomial'
will choose a more accurate point by smoothing the line.
The argument for
interp_method
parameter is a string of either "interp1d" or "polynomial".
x = list(range(90))
y = [
7304, 6978, 6666, 6463, 6326, 6048, 6032, 5762, 5742,
5398, 5256, 5226, 5001, 4941, 4854, 4734, 4558, 4491,
4411, 4333, 4234, 4139, 4056, 4022, 3867, 3808, 3745,
3692, 3645, 3618, 3574, 3504, 3452, 3401, 3382, 3340,
3301, 3247, 3190, 3179, 3154, 3089, 3045, 2988, 2993,
2941, 2875, 2866, 2834, 2785, 2759, 2763, 2720, 2660,
2690, 2635, 2632, 2574, 2555, 2545, 2513, 2491, 2496,
2466, 2442, 2420, 2381, 2388, 2340, 2335, 2318, 2319,
2308, 2262, 2235, 2259, 2221, 2202, 2184, 2170, 2160,
2127, 2134, 2101, 2101, 2066, 2074, 2063, 2048, 2031
]
# the default spline fit, `interp_method='interp1d'`
kneedle = KneeLocator(x, y, S=1.0, curve='convex', direction='decreasing', interp_method='interp1d')
kneedle.plot_knee_normalized()
# The same data, only using a polynomial fit this time.
kneedle = KneeLocator(x, y, S=1.0, curve='convex', direction='decreasing', interp_method='polynomial')
kneedle.plot_knee_normalized()
Figure 3 from the manuscript estimates the knee to be x=60
for a NoisyGaussian
.
This simulate 5,000 NoisyGaussian
instances and finds the average.
knees = []
for i in range(5):
x, y = DataGenerator.noisy_gaussian(mu=50, sigma=10, N=1000)
kneedle = KneeLocator(x, y, curve='concave', direction='increasing', interp_method='polynomial', online=True)
knees.append(kneedle.knee)
# average knee point
round(sum(knees) / len(knees), 3)
63.583
Find the optimal number of clusters (k) to use in k-means clustering. See the tutorial in the notebooks directory.
KneeLocator(x, y, curve='convex', direction='decreasing')
Contributions are welcome, please refer to CONTRIBUTING to learn more about how to contribute.
Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior Ville Satopa † , Jeannie Albrecht† , David Irwin‡ , and Barath Raghavan§ †Williams College, Williamstown, MA ‡University of Massachusetts Amherst, Amherst, MA § International Computer Science Institute, Berkeley, CA