/DANet-RGBD-Saliency

(ECCV 2020) A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection

Primary LanguagePythonMIT LicenseMIT

Logo

A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection

Xiaoqi Zhao, Lihe Zhang, Youwei Pang, Huchuan Lu, Lei Zhang
⭐ arXiv »

The official repo of the ECCV 2020 paper A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection.

Saliency map

Google Drive / BaiduYunPan(3m9i)

Related Works

Network

Module

Quantitative comparison

Visual comparison

Trained Model

You can download the trained VGG16-model(DUT-RGBD or NJUD&NLPR) at BaiduYunPan(5uhd).

Requirement

  • Python 3.7
  • PyTorch 1.5.0
  • torchvision
  • numpy
  • Pillow
  • Cython

Training

1.Set the path of training sets in config.py
2.Run train.py

Testing

1.Set the path of testing sets in config.py
2.Run generate_salmap.py (can generate the predicted saliency maps)
3.Run generate_visfeamaps.py (can visualize feature maps)
4.Run test_metric_score.py (can evaluate the predicted saliency maps in terms of fmax,fmean,wfm,sm,em,mae). You also can use the toolkit released by us:https://github.com/lartpang/Py-SOD-VOS-EvalToolkit.

BibTex

@inproceedings{DANet,
  title={A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection},
  author={Zhao, Xiaoqi and Zhang, Lihe and Pang, Youwei and Lu, Huchuan and Zhang, Lei},
  booktitle=ECCV,
  year={2020}
}